科研成果详情

发表状态已发表Published
题名Ensemble clustering using extended fuzzy k-means for cancer data analysis
作者
发表日期2021-06-15
发表期刊Expert Systems with Applications
ISSN/eISSN0957-4174
卷号172
摘要

Clustering analysis is a significant research topic in discovering cancer using different profiles of gene expression, which is very important to successfully diagnose and treat the cancer decease. Many ensemble clustering methods have been developed to perform clustering using tumor data. Only few of them incorporates a significant number of input clusterings, the optimal number of clusters in each input clustering, and an appropriate ensemble method to combine input clusterings into a final clustering. In this paper, we introduce two new steps in the standard fuzzy k-means algorithm to determine the optimal number of input clusterings, and the optimal number of clusters in each clustering for ensemble clustering. The first one is to incorporate a penalty term for making the algorithm insensitive to the initialization of cluster centroids. The second one is to automate a clustering process for iteratively updating the feature weights. This step addresses the noise values in the dataset. We propose an ensemble clustering method, which combines a set of input clusterings into a final clustering having better overall quality. Experiments on real cancer gene expression profiles illustrate that the proposed algorithm outperformed the well-known clustering algorithms.

关键词Cancer data Cluster analysis Fuzzy k-means Variable weights
DOI10.1016/j.eswa.2021.114622
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS记录号WOS:000633045900001
Scopus入藏号2-s2.0-85100691973
引用统计
被引频次:28[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/5999
专题理工科技学院
通讯作者Khan, Imran; Luo, Zongwei
作者单位
1.Department of Computer Science,College of Science,Sultan Qaboos University,Muscat,P.O. Box 31, Al-Khoud 123,Oman
2.Department of Information Systems at Sultan,Qaboos University,Muscat,P.O. Box 31, Al-Khoud 123,Oman
3.BNU-UIC Institute of Artificial Intelligence and Future Networks,Beijing Normal University (BNU Zhuhai),BNU-HKBU United International College, Tangjiawan,Zhuhai,Rd. JinTong 2000#,China
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Khan, Imran,Luo, Zongwei,Shaikh, Abdul Khaliqueet al. Ensemble clustering using extended fuzzy k-means for cancer data analysis[J]. Expert Systems with Applications, 2021, 172.
APA Khan, Imran, Luo, Zongwei, Shaikh, Abdul Khalique, & Hedjam, Rachid. (2021). Ensemble clustering using extended fuzzy k-means for cancer data analysis. Expert Systems with Applications, 172.
MLA Khan, Imran,et al."Ensemble clustering using extended fuzzy k-means for cancer data analysis". Expert Systems with Applications 172(2021).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Khan, Imran]的文章
[Luo, Zongwei]的文章
[Shaikh, Abdul Khalique]的文章
百度学术
百度学术中相似的文章
[Khan, Imran]的文章
[Luo, Zongwei]的文章
[Shaikh, Abdul Khalique]的文章
必应学术
必应学术中相似的文章
[Khan, Imran]的文章
[Luo, Zongwei]的文章
[Shaikh, Abdul Khalique]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。