发表状态 | 已发表Published |
题名 | On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study |
作者 | |
发表日期 | 2021 |
发表期刊 | Mathematics and Mechanics of Solids
![]() |
ISSN/eISSN | 1081-2865 |
卷号 | 27期号:4页码:687-710 |
摘要 | We have derived a rod theory by an asymptotic reduction method for a straight and circular rod composed of linearized anisotropic material in part I of this series. In the current work, we first verify the derived rod theory through five benchmark Saint-Venant’s problems. Then, under a specific loading condition (line force at the lateral surface with two clamped ends), we apply the rod theory to conduct a parametric study of the effects of elastic moduli on the deformation of a rod composed of four types of anisotropic materials including cubic, transversely isotropic, orthotropic, and monoclinic materials. Analytical solutions for the displacement, axial twist angle, stress, and principal stress have been obtained and a systematic investigation of the effects of elastic moduli on these quantities is conducted, which is the main feature of this paper. It is found that these elastic moduli arise in a certain form and in a certain order in the solutions, which gives information about how to appropriately choose moduli to adjust the deformation. Among the four anisotropic materials, it turns out that the monoclinic material presents the most remarkable mechanical behavior owing to the existence of a coupling coefficient: it yields coupled leading-order rod equations, non-trivial axial twist angle, non-negligible transverse shear deformation, and a more adjustable principal stress along the axis. |
关键词 | analytical solutions monoclinic material parametric study Rod theory Saint-Venant’s problems |
DOI | 10.1177/10812865211034905 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Materials Science ; Mathematics ; Mechanics |
WOS类目 | Materials Science, Multidisciplinary ; Mathematics, Interdisciplinary Applications ; Mechanics |
WOS记录号 | WOS:000684366100001 |
Scopus入藏号 | 2-s2.0-85112290169 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6064 |
专题 | 理工科技学院 |
通讯作者 | Chen, Xiaoyi |
作者单位 | 1.Division of Science and Technology,BNU-HKBU United International College,Zhuhai,China 2.Department of Mathematics and Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong 3.Université et Unité de Mécanique de Lille EA 7512,Villeneuve d’Ascq,France |
第一作者单位 | 北师香港浸会大学 |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Chen, Xiaoyi,Dai, Hui Hui,Pruchnicki, Erick. On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study[J]. Mathematics and Mechanics of Solids, 2021, 27(4): 687-710. |
APA | Chen, Xiaoyi, Dai, Hui Hui, & Pruchnicki, Erick. (2021). On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study. Mathematics and Mechanics of Solids, 27(4), 687-710. |
MLA | Chen, Xiaoyi,et al."On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study". Mathematics and Mechanics of Solids 27.4(2021): 687-710. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论