科研成果详情

发表状态已发表Published
题名On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study
作者
发表日期2021
发表期刊Mathematics and Mechanics of Solids
ISSN/eISSN1081-2865
卷号27期号:4页码:687-710
摘要

We have derived a rod theory by an asymptotic reduction method for a straight and circular rod composed of linearized anisotropic material in part I of this series. In the current work, we first verify the derived rod theory through five benchmark Saint-Venant’s problems. Then, under a specific loading condition (line force at the lateral surface with two clamped ends), we apply the rod theory to conduct a parametric study of the effects of elastic moduli on the deformation of a rod composed of four types of anisotropic materials including cubic, transversely isotropic, orthotropic, and monoclinic materials. Analytical solutions for the displacement, axial twist angle, stress, and principal stress have been obtained and a systematic investigation of the effects of elastic moduli on these quantities is conducted, which is the main feature of this paper. It is found that these elastic moduli arise in a certain form and in a certain order in the solutions, which gives information about how to appropriately choose moduli to adjust the deformation. Among the four anisotropic materials, it turns out that the monoclinic material presents the most remarkable mechanical behavior owing to the existence of a coupling coefficient: it yields coupled leading-order rod equations, non-trivial axial twist angle, non-negligible transverse shear deformation, and a more adjustable principal stress along the axis.

关键词analytical solutions monoclinic material parametric study Rod theory Saint-Venant’s problems
DOI10.1177/10812865211034905
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Materials Science ; Mathematics ; Mechanics
WOS类目Materials Science, Multidisciplinary ; Mathematics, Interdisciplinary Applications ; Mechanics
WOS记录号WOS:000684366100001
Scopus入藏号2-s2.0-85112290169
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6064
专题理工科技学院
通讯作者Chen, Xiaoyi
作者单位
1.Division of Science and Technology,BNU-HKBU United International College,Zhuhai,China
2.Department of Mathematics and Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong
3.Université et Unité de Mécanique de Lille EA 7512,Villeneuve d’Ascq,France
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Chen, Xiaoyi,Dai, Hui Hui,Pruchnicki, Erick. On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study[J]. Mathematics and Mechanics of Solids, 2021, 27(4): 687-710.
APA Chen, Xiaoyi, Dai, Hui Hui, & Pruchnicki, Erick. (2021). On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study. Mathematics and Mechanics of Solids, 27(4), 687-710.
MLA Chen, Xiaoyi,et al."On a consistent rod theory for a linearized anisotropic elastic material II. Verification and parametric study". Mathematics and Mechanics of Solids 27.4(2021): 687-710.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Xiaoyi]的文章
[Dai, Hui Hui]的文章
[Pruchnicki, Erick]的文章
百度学术
百度学术中相似的文章
[Chen, Xiaoyi]的文章
[Dai, Hui Hui]的文章
[Pruchnicki, Erick]的文章
必应学术
必应学术中相似的文章
[Chen, Xiaoyi]的文章
[Dai, Hui Hui]的文章
[Pruchnicki, Erick]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。