发表状态 | 已发表Published |
题名 | Edge-Based Communication Optimization for Distributed Federated Learning |
作者 | |
发表日期 | 2022 |
发表期刊 | IEEE Transactions on Network Science and Engineering
![]() |
ISSN/eISSN | 2327-4697 |
卷号 | 9期号:4页码:2015-2024 |
摘要 | Federated learning can achieve the purpose of distributed machine learning without sharing privacy and sensitive data of end devices. However, high concurrent access to the server increases the transmission delay of model updates, and the local model may be an unnecessary model with the opposite gradient from the global model, thus incurring a large number of additional communication costs. To this end, we study a framework of edge-based communication optimization to reduce the number of end devices directly connected to the server while avoiding uploading unnecessary local updates. Specifically, we cluster devices in the same network location and deploy mobile edge nodes in different network locations to serve as hubs for cloud and end devices communications, thereby avoiding the latency associated with high server concurrency. Meanwhile, we propose a model cleaning method based on cosine similarity. If the value of similarity is less than a preset threshold, the local update will not be uploaded to the mobile edge nodes, thus avoid unnecessary communication. Experimental results show that compared with traditional federated learning, the proposed scheme reduces the number of local updates by 60%, and accelerates the convergence speed of the regression model by 10.3%. |
关键词 | Clustering Collaborative work Communication optimization Computational modeling Data models Data privacy Federated learning Mobile edge nodes Model filtering Optimization Servers Training |
DOI | 10.1109/TNSE.2021.3083263 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Engineering ; Mathematics |
WOS类目 | Engineering, Multidisciplinary ; Mathematics, Interdisciplinary Applications |
WOS记录号 | WOS:000818899600007 |
Scopus入藏号 | 2-s2.0-85107362752 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6083 |
专题 | 理工科技学院 |
通讯作者 | Xie, Mande |
作者单位 | 1.Beijing Normal Univ, BNU UIC Inst Artificial Intelligence & Future Net, Zhuhai 519000, Peoples R China 2.BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519000, Peoples R China 3.Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China 4.Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia 5.Macau Univ Sci & Technol, Fac Informat Technol, Macau 519000, Peoples R China 6.Zhejiang Gongshang Univ, Sch Informat & Elect Engn, Hangzhou 310018, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Tian,Liu, Yan,Zheng, Xiet al. Edge-Based Communication Optimization for Distributed Federated Learning[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2015-2024. |
APA | Wang, Tian, Liu, Yan, Zheng, Xi, Dai, Hong Ning, Jia, Weijia, & Xie, Mande. (2022). Edge-Based Communication Optimization for Distributed Federated Learning. IEEE Transactions on Network Science and Engineering, 9(4), 2015-2024. |
MLA | Wang, Tian,et al."Edge-Based Communication Optimization for Distributed Federated Learning". IEEE Transactions on Network Science and Engineering 9.4(2022): 2015-2024. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Tian]的文章 |
[Liu, Yan]的文章 |
[Zheng, Xi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Tian]的文章 |
[Liu, Yan]的文章 |
[Zheng, Xi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Tian]的文章 |
[Liu, Yan]的文章 |
[Zheng, Xi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论