科研成果详情

发表状态已发表Published
题名Edge-Based Communication Optimization for Distributed Federated Learning
作者
发表日期2022
发表期刊IEEE Transactions on Network Science and Engineering
ISSN/eISSN2327-4697
卷号9期号:4页码:2015-2024
摘要

Federated learning can achieve the purpose of distributed machine learning without sharing privacy and sensitive data of end devices. However, high concurrent access to the server increases the transmission delay of model updates, and the local model may be an unnecessary model with the opposite gradient from the global model, thus incurring a large number of additional communication costs. To this end, we study a framework of edge-based communication optimization to reduce the number of end devices directly connected to the server while avoiding uploading unnecessary local updates. Specifically, we cluster devices in the same network location and deploy mobile edge nodes in different network locations to serve as hubs for cloud and end devices communications, thereby avoiding the latency associated with high server concurrency. Meanwhile, we propose a model cleaning method based on cosine similarity. If the value of similarity is less than a preset threshold, the local update will not be uploaded to the mobile edge nodes, thus avoid unnecessary communication. Experimental results show that compared with traditional federated learning, the proposed scheme reduces the number of local updates by 60%, and accelerates the convergence speed of the regression model by 10.3%.

关键词Clustering Collaborative work Communication optimization Computational modeling Data models Data privacy Federated learning Mobile edge nodes Model filtering Optimization Servers Training
DOI10.1109/TNSE.2021.3083263
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Engineering ; Mathematics
WOS类目Engineering, Multidisciplinary ; Mathematics, Interdisciplinary Applications
WOS记录号WOS:000818899600007
Scopus入藏号2-s2.0-85107362752
引用统计
被引频次:65[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6083
专题理工科技学院
通讯作者Xie, Mande
作者单位
1.Beijing Normal Univ, BNU UIC Inst Artificial Intelligence & Future Net, Zhuhai 519000, Peoples R China
2.BNU HKBU United Int Coll, Guangdong Key Lab AI & Multimodal Data Proc, Zhuhai 519000, Peoples R China
3.Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Peoples R China
4.Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
5.Macau Univ Sci & Technol, Fac Informat Technol, Macau 519000, Peoples R China
6.Zhejiang Gongshang Univ, Sch Informat & Elect Engn, Hangzhou 310018, Peoples R China
推荐引用方式
GB/T 7714
Wang, Tian,Liu, Yan,Zheng, Xiet al. Edge-Based Communication Optimization for Distributed Federated Learning[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(4): 2015-2024.
APA Wang, Tian, Liu, Yan, Zheng, Xi, Dai, Hong Ning, Jia, Weijia, & Xie, Mande. (2022). Edge-Based Communication Optimization for Distributed Federated Learning. IEEE Transactions on Network Science and Engineering, 9(4), 2015-2024.
MLA Wang, Tian,et al."Edge-Based Communication Optimization for Distributed Federated Learning". IEEE Transactions on Network Science and Engineering 9.4(2022): 2015-2024.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Tian]的文章
[Liu, Yan]的文章
[Zheng, Xi]的文章
百度学术
百度学术中相似的文章
[Wang, Tian]的文章
[Liu, Yan]的文章
[Zheng, Xi]的文章
必应学术
必应学术中相似的文章
[Wang, Tian]的文章
[Liu, Yan]的文章
[Zheng, Xi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。