题名 | Evaluation model of enterprise operation based on BP neural network optimization algorithm |
作者 | |
发表日期 | 2020-06-18 |
会议录名称 | Journal of Physics: Conference Series
![]() |
ISSN | 1742-6588 |
卷号 | 1570 |
期号 | 1 |
摘要 | The parameter selection of the traditional BP neural network (BPNN) has randomness, which makes the network prone to local extreme values during the calculation process. In order to solve this problem, this paper introduces the bat algorithm(BA) to optimize the parameter selection process of the BPNN and apply the algorithm to evaluate the enterprises' operating condition, a corresponding evaluation model of the enterprises' operating condition is established, and the evaluation model is applied to the prediction of the enterprises' future operating condition and compared with the prediction effect of the traditional BPNN model. The prediction accuracy of the BPNN optimization algorithm is higher than the prediction accuracy of the traditional BPNN. The established enterprise operation evaluation model can effectively predict the future operation of the enterprise. |
DOI | 10.1088/1742-6596/1570/1/012084 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85088050824 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6166 |
专题 | 北师香港浸会大学 |
通讯作者 | Zhang,Yan |
作者单位 | 1.Tongling University,Tongling, Anhui,244000,China 2.Beijing Normal University,Hong Kong Baptist University,United International College,Zhuhai, Guangdong,519000,China 3.University of Chinese Academy of Social Sciences,Beijing,102488,China 4.Chengdu University of Technology,ChengDu, Sichuan,610000,China |
推荐引用方式 GB/T 7714 | Zhang,Yan,Hu,Ziwei,Ji,Liet al. Evaluation model of enterprise operation based on BP neural network optimization algorithm[C], 2020. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang,Yan]的文章 |
[Hu,Ziwei]的文章 |
[Ji,Li]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang,Yan]的文章 |
[Hu,Ziwei]的文章 |
[Ji,Li]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang,Yan]的文章 |
[Hu,Ziwei]的文章 |
[Ji,Li]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论