科研成果详情

发表状态已发表Published
题名Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction
作者
发表日期2020-04
发表期刊IEEE Transactions on Fuzzy Systems
ISSN/eISSN1063-6706
卷号28期号:4页码:731-745
摘要

Over the years, financial engineering ranging from the study of financial signals to the modeling of financial prediction is one of the most exciting topics for both academia and financial community. With the flourishing AI technology in the past 20 years, various hybrid intelligent financial prediction systems with the integration of neural networks, chaos theory, fuzzy logic, and genetic algorithms have been proposed. An interval type-2 fuzzy logic system (IT2FLS) with its remarkable capability for the modeling of highly uncertain events and attributes provides a perfect tool to interpret various financial phenomena and patterns. In this paper, the author proposes a chaotic type-2 transient-fuzzy deep neuro-oscillatory network with retrograde signaling (CT2TFDNN) for worldwide financial prediction. With the extension of author's original work on Lee oscillator- A chaotic discrete-time neural oscillator with profound transient-chaotic property-CT2TFDNN provides: Effective modeling of an IT2FLS with a chaotic transient-fuzzy membership function; and effective time-series network training and prediction using a chaotic deep neuro-oscillatory network with retrograde signaling. CT2TFDNN not only provides a fast chaotic fuzzy-neuro deep learning and forecast solution, but also successfully resolves the massive data overtraining and deadlock problems, which are usually imposed by traditional recurrent neural networks using classical sigmoid-based activation functions. From the implementation perspective, CT2TFDNN is integrated with 2048 trading-day time-series financial data and top-10 major financial signals as fuzzy financial signals for the real-time prediction of 129 worldwide financial products that consists of: Nine major cryptocurrencies, 84 worldwide forex, 19 major commodities, and 17 worldwide financial indices.

关键词Chaotic bifurcation transfer function chaotic deep neuro-oscillatory network chaotic type-2 transient-fuzzy logic (CT2TFL) financial prediction Lee oscillator
DOI10.1109/TFUZZ.2019.2914642
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000524497000011
Scopus入藏号2-s2.0-85075248510
引用统计
被引频次:47[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6182
专题理工科技学院
通讯作者Lee, Raymond S.T.
作者单位
Computer Science and Technology Division,Beijing Normal University,Hong Kong Baptist University United International College,Zhuhai,519000,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Lee, Raymond S.T. Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(4): 731-745.
APA Lee, Raymond S.T. (2020). Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction. IEEE Transactions on Fuzzy Systems, 28(4), 731-745.
MLA Lee, Raymond S.T.."Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction". IEEE Transactions on Fuzzy Systems 28.4(2020): 731-745.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lee, Raymond S.T.]的文章
百度学术
百度学术中相似的文章
[Lee, Raymond S.T.]的文章
必应学术
必应学术中相似的文章
[Lee, Raymond S.T.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。