发表状态 | 已发表Published |
题名 | Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction |
作者 | |
发表日期 | 2020-04 |
发表期刊 | IEEE Transactions on Fuzzy Systems
![]() |
ISSN/eISSN | 1063-6706 |
卷号 | 28期号:4页码:731-745 |
摘要 | Over the years, financial engineering ranging from the study of financial signals to the modeling of financial prediction is one of the most exciting topics for both academia and financial community. With the flourishing AI technology in the past 20 years, various hybrid intelligent financial prediction systems with the integration of neural networks, chaos theory, fuzzy logic, and genetic algorithms have been proposed. An interval type-2 fuzzy logic system (IT2FLS) with its remarkable capability for the modeling of highly uncertain events and attributes provides a perfect tool to interpret various financial phenomena and patterns. In this paper, the author proposes a chaotic type-2 transient-fuzzy deep neuro-oscillatory network with retrograde signaling (CT2TFDNN) for worldwide financial prediction. With the extension of author's original work on Lee oscillator- A chaotic discrete-time neural oscillator with profound transient-chaotic property-CT2TFDNN provides: Effective modeling of an IT2FLS with a chaotic transient-fuzzy membership function; and effective time-series network training and prediction using a chaotic deep neuro-oscillatory network with retrograde signaling. CT2TFDNN not only provides a fast chaotic fuzzy-neuro deep learning and forecast solution, but also successfully resolves the massive data overtraining and deadlock problems, which are usually imposed by traditional recurrent neural networks using classical sigmoid-based activation functions. From the implementation perspective, CT2TFDNN is integrated with 2048 trading-day time-series financial data and top-10 major financial signals as fuzzy financial signals for the real-time prediction of 129 worldwide financial products that consists of: Nine major cryptocurrencies, 84 worldwide forex, 19 major commodities, and 17 worldwide financial indices. |
关键词 | Chaotic bifurcation transfer function chaotic deep neuro-oscillatory network chaotic type-2 transient-fuzzy logic (CT2TFL) financial prediction Lee oscillator |
DOI | 10.1109/TFUZZ.2019.2914642 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000524497000011 |
Scopus入藏号 | 2-s2.0-85075248510 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6182 |
专题 | 理工科技学院 |
通讯作者 | Lee, Raymond S.T. |
作者单位 | Computer Science and Technology Division,Beijing Normal University,Hong Kong Baptist University United International College,Zhuhai,519000,China |
第一作者单位 | 北师香港浸会大学 |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Lee, Raymond S.T. Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(4): 731-745. |
APA | Lee, Raymond S.T. (2020). Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction. IEEE Transactions on Fuzzy Systems, 28(4), 731-745. |
MLA | Lee, Raymond S.T.."Chaotic Type-2 Transient-Fuzzy Deep Neuro-Oscillatory Network (CT2TFDNN) for Worldwide Financial Prediction". IEEE Transactions on Fuzzy Systems 28.4(2020): 731-745. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lee, Raymond S.T.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lee, Raymond S.T.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lee, Raymond S.T.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论