题名 | Heart rate variability classification using deep learning with dimensional reduction |
作者 | |
发表日期 | 2020 |
会议录名称 | Proceedings of SPIE - The International Society for Optical Engineering
![]() |
ISSN | 0277-786X |
卷号 | 11584 |
摘要 | Heart rate variability (HRV) refers to the variation of the heart rate cycles, which contains information of how the autonomic nerves system regulates the cardiovascular system. HRV is a valuable indicator to diagnose various cardiovascular diseases and predict arrhythmia events. This study is based on the standardized five-minute and ten-minute RR interval series from the open source Electrocardiogram (ECG) database website PhysioNet. Artificial Neural Networks (ANN) are used to distinguish patients with congestive heart failure or atrial fibrillation from normal sinus rhythm utilizing features calculated by time and frequency domains as well as nonlinear analysis. To eliminate redundancy and avoid overfitting, Principal Component Analysis (PCA) is performed to screen for the most efficient features. PCA not only improves the accuracy but also greatly reduces the number of nodes in the ANN model, thus, improves the efficiency. Overall, ANN classifiers achieved an accuracy of 79% for five-minute RR interval series and 84% for that of ten-minute series. The performance of Random Forest (RF) classifier is not as satisfactory. However, its list of most important features indicates nonlinear dynamics may play an important role and provide useful insights to the classification problem. |
关键词 | entropy frequency domain HRV neural network nonlinear PCA time domain |
DOI | 10.1117/12.2579588 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85097200654 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6200 |
专题 | 北师香港浸会大学 |
作者单位 | Beijing Normal University-Hong Kong Baptist University-United International College,Zhuhai, Guangdong Province,China |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Lin,Qinghua,Tsang,Ken K.T. Heart rate variability classification using deep learning with dimensional reduction[C], 2020. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lin,Qinghua]的文章 |
[Tsang,Ken K.T.]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lin,Qinghua]的文章 |
[Tsang,Ken K.T.]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lin,Qinghua]的文章 |
[Tsang,Ken K.T.]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论