科研成果详情

发表状态已发表Published
题名Dual Pursuit for Subspace Learning
作者
发表日期2019-06-01
发表期刊IEEE Transactions on Multimedia
ISSN/eISSN1520-9210
卷号21期号:6页码:1399-1411
摘要

In general, low-rank representation (LRR) aims to find the lowest rank representation with respect to a dictionary. In fact, the dictionary is a key aspect of low-rank representation. However, a lot of low-rank representation methods usually use the data itself as a dictionary (i.e., a fixed dictionary), which may degrade their performances due to the lack of clustering ability of a fixed dictionary. To this end, we propose learning a locality-preserving dictionary instead of the fixed dictionary for low-rank representation, where the locality-preserving dictionary is constructed by using a graph regularization technique to capture the intrinsic geometric structure of the dictionary and, hence, the locality-preserving dictionary has an underlying clustering ability. In this way, the obtained low-rank representation via the locality-preserving dictionary has a better grouping-effect representation. Inversely, a better grouping-effect representation can help to learn a good dictionary. The locality-preserving dictionary and the grouping-effect representation interact with each other, where dual pursuit is called. The proposed method, namely, Dual Pursuit for Subspace Learning, provides us with a robust method for clustering and classification simultaneously, and compares favorably with the other state-of-the-art methods.

关键词dual pursuit graph-regularization technique Low-rank representation
DOI10.1109/TMM.2018.2877888
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000469337400005
Scopus入藏号2-s2.0-85055695209
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6243
专题北师香港浸会大学
通讯作者He, Zhenyu
作者单位
1.School of Computer Science and Technology,Harbin Institute of Technology,Shenzhen,518055,China
2.Department of Computer Science and the Institute of Research and Continuing Education,Hong Kong Baptist University,Hong Kong,Hong Kong
3.United International College,Beijing Normal University-HKBU,Zhuhai,519000,China
推荐引用方式
GB/T 7714
Yi, Shuangyan,Liang, Yingyi,He, Zhenyuet al. Dual Pursuit for Subspace Learning[J]. IEEE Transactions on Multimedia, 2019, 21(6): 1399-1411.
APA Yi, Shuangyan, Liang, Yingyi, He, Zhenyu, Li, Yi, & Cheung, Yiu Ming. (2019). Dual Pursuit for Subspace Learning. IEEE Transactions on Multimedia, 21(6), 1399-1411.
MLA Yi, Shuangyan,et al."Dual Pursuit for Subspace Learning". IEEE Transactions on Multimedia 21.6(2019): 1399-1411.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yi, Shuangyan]的文章
[Liang, Yingyi]的文章
[He, Zhenyu]的文章
百度学术
百度学术中相似的文章
[Yi, Shuangyan]的文章
[Liang, Yingyi]的文章
[He, Zhenyu]的文章
必应学术
必应学术中相似的文章
[Yi, Shuangyan]的文章
[Liang, Yingyi]的文章
[He, Zhenyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。