科研成果详情

发表状态已发表Published
题名Unified Sparse Subspace Learning via Self-Contained Regression
作者
发表日期2018-10-01
发表期刊IEEE Transactions on Circuits and Systems for Video Technology
ISSN/eISSN1051-8215
卷号28期号:10页码:2537-2550
摘要

In order to improve the interpretation of principal components, many sparse principal component analysis (PCA) methods have been proposed by in the form of self-contained regression-type. In this paper, we generalize the steps needed to move from PCA-like methods to its self-contained regression-type, and propose a joint sparse pixel weighted PCA method. More specifically, we generalize a self-contained regression-type framework of graph embedding. Unlike the regression-type of graph embedding relying on the regular low-dimensional data, the self-contained regression-type framework does not rely on the regular low-dimensional data of graph embedding. The learned low-dimensional data in the form of self-contained regression theoretically approximates to the regular low-dimensional data. Under this self-contained regression-type, sparse regularization term can be arbitrarily added, and hence, the learned sparse regression coefficients can interpret the low-dimensional data. By using the joint sparse 2,1-norm regularizer, a sparse self-contained regression-type of pixel weighted PCA can be produced. Experiments on six data sets demonstrate that the proposed method is both feasible and effective.

关键词self-contained regression-type sparse subspace learning Weighted PCA
DOI10.1109/TCSVT.2017.2721541
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000448517900009
Scopus入藏号2-s2.0-85022026314
引用统计
被引频次:23[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6292
专题北师香港浸会大学
通讯作者He, Zhenyu
作者单位
1.School of Computer Science,Harbin Institute of Technology Shenzhen Graduate School,Shenzhen,518055,China
2.Institute of Research and Continuing Education,Hong Kong Baptist University,Hong Kong,Hong Kong
3.Dept. of Comp. Sci. and the Inst. of Res. and Cont. Education,Hong Kong Baptist University,Hong Kong,Hong Kong
4.Beijing Normal University-HKBU United International College,Zhuhai,519000,China
5.Shenzhen Key Laboratory of Media Security,College of Mathematics and Statistics,Shenzhen University,Shenzhen,518060,China
推荐引用方式
GB/T 7714
Yi, Shuangyan,He, Zhenyu,Cheung, Yiu Minget al. Unified Sparse Subspace Learning via Self-Contained Regression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2537-2550.
APA Yi, Shuangyan, He, Zhenyu, Cheung, Yiu Ming, & Chen, Wen Sheng. (2018). Unified Sparse Subspace Learning via Self-Contained Regression. IEEE Transactions on Circuits and Systems for Video Technology, 28(10), 2537-2550.
MLA Yi, Shuangyan,et al."Unified Sparse Subspace Learning via Self-Contained Regression". IEEE Transactions on Circuits and Systems for Video Technology 28.10(2018): 2537-2550.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yi, Shuangyan]的文章
[He, Zhenyu]的文章
[Cheung, Yiu Ming]的文章
百度学术
百度学术中相似的文章
[Yi, Shuangyan]的文章
[He, Zhenyu]的文章
[Cheung, Yiu Ming]的文章
必应学术
必应学术中相似的文章
[Yi, Shuangyan]的文章
[He, Zhenyu]的文章
[Cheung, Yiu Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。