科研成果详情

题名Supervised manifold learning for media interestingness prediction
作者
发表日期2016
会议录名称CEUR Workshop Proceedings
ISSN1613-0073
卷号1739
摘要In this paper, we describe the models designed for automatically selecting multimedia data, e.g., image and video segments, which are considered to be interesting for a common viewer. Specifically, we utilize an existing dimensionality reduction method called Neighborhood MinMax Projections (NMMP) to extract the low-dimensional features for predicting the discrete interestingness labels. Meanwhile, we introduce a new dimensionality reduction method dubbed Supervised Manifold Regression (SMR) to learn the compact representations for predicting the continuous interestingness levels. Finally, we use the nearest neighbor classifier and support vector regressor for classification and regression, respectively. Experimental results demonstrate the effectiveness of the low-dimensional features learned by NMMP and SMR.
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85006320562
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6423
专题北师香港浸会大学
作者单位
1.Department of Computer Science,Hong Kong Baptist University,Kowloon Tong,Hong Kong
2.Institute of Research and Continuing Education,Hong Kong Baptist University,Shenzhen,China
3.AAOO Tech Limited,Shatin,Hong Kong
4.United International College,Beijing Normal University,Hong Kong Baptist University,Zhuhai,China
推荐引用方式
GB/T 7714
Liu,Yang,Gu,Zhonglei,Cheung,Yiu Ming. Supervised manifold learning for media interestingness prediction[C], 2016.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu,Yang]的文章
[Gu,Zhonglei]的文章
[Cheung,Yiu Ming]的文章
百度学术
百度学术中相似的文章
[Liu,Yang]的文章
[Gu,Zhonglei]的文章
[Cheung,Yiu Ming]的文章
必应学术
必应学术中相似的文章
[Liu,Yang]的文章
[Gu,Zhonglei]的文章
[Cheung,Yiu Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。