题名 | Notes on L(1,1) and L(2,1) labelings for n -cube |
作者 | |
发表日期 | 2014 |
会议录名称 | Journal of Combinatorial Optimization
![]() |
ISSN | 1382-6905 |
卷号 | 28 |
期号 | 3 |
页码 | 626-638 |
摘要 | Suppose d is a positive integer. An L(d,1) -labeling of a simple graph G=(V,E) is a function f:V→N={0,1,2,⋯} such that |f(u)-f(v)|≥ d if d(u,v)=1; and |f(u)-f(v)|≥ 1 if d(u,v)=2. The span of an L(d,1) -labeling f is the absolute difference between the maximum and minimum labels. The L(d,1) -labeling number, λ(G), is the minimum of span over all L(d,1) -labelings of G. Whittlesey et al. proved that λ (Q)≤ 2+2-2, where n≤ 2-q and 1≤ q≤ k+1. As a consequence, λ(Q)≤ 2n for n≥ 3. In particular, λ (Q)≤ 2-1. In this paper, we provide an elementary proof of this bound. Also, we study the (1,1) -labeling number of Q. A lower bound on λ(Q ) are provided and λ(Q) are determined. © 2012 Springer Science+Business Media New York. |
关键词 | Channel assignment problem Distance two labeling n -cube |
DOI | 10.1007/s10878-012-9568-6 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-84906948383 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/6515 |
专题 | 北师香港浸会大学 |
作者单位 | 1.Department of Mathematics, Hong Kong Baptist University,224 Waterloo Road,Kowloon Tong,Hong Kong 2.Division of Science and Technology, BNU-HKBU United International College,Zhuhai,China |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Zhou,Haiying,Shiu,Wai Chee,Lam,Peter Che Bor. Notes on L(1,1) and L(2,1) labelings for n -cube[C], 2014: 626-638. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论