科研成果详情

题名Linear dependency modeling for classifier fusion and feature combination
作者
发表日期2013
发表期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN/eISSN0162-8828
卷号35期号:5页码:1135-1148
摘要This paper addresses the independent assumption issue in fusion process. In the last decade, dependency modeling techniques were developed under a specific distribution of classifiers or by estimating the joint distribution of the posteriors. This paper proposes a new framework to model the dependency between features without any assumption on feature/classifier distribution, and overcomes the difficulty in estimating the high-dimensional joint density. In this paper, we prove that feature dependency can be modeled by a linear combination of the posterior probabilities under some mild assumptions. Based on the linear combination property, two methods, namely, Linear Classifier Dependency Modeling (LCDM) and Linear Feature Dependency Modeling (LFDM), are derived and developed for dependency modeling in classifier level and feature level, respectively. The optimal models for LCDM and LFDM are learned by maximizing the margin between the genuine and imposter posterior probabilities. Both synthetic data and real datasets are used for experiments. Experimental results show that LCDM and LFDM with dependency modeling outperform existing classifier level and feature level combination methods under nonnormal distributions and on four real databases, respectively. Comparing the classifier level and feature level fusion methods, LFDM gives the best performance. © 1979-2012 IEEE.
关键词classifier level fusion feature dependency feature level fusion Linear dependency modeling multiple feature fusion
DOI10.1109/TPAMI.2012.198
URL查看来源
语种英语English
Scopus入藏号2-s2.0-84875433320
引用统计
被引频次:32[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6548
专题北师香港浸会大学
作者单位
1.Department of Computer Science,Hong Kong Baptist University,Hong Kong,Hong Kong
2.BNU-HKBU United International College,Zhuhai,China
3.School of Information Science and Technology,Sun Yat-Sen University,Building 110,No. 135, Xin Gang Xi Road,Guangzhou 510257,China
4.Guangdong Province Key Laboratory of Information Security,Guangzhou 510006,China
推荐引用方式
GB/T 7714
Ma,Andy Jinhua,Yuen,Pong C.,Lai,Jian Huang. Linear dependency modeling for classifier fusion and feature combination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1135-1148.
APA Ma,Andy Jinhua, Yuen,Pong C., & Lai,Jian Huang. (2013). Linear dependency modeling for classifier fusion and feature combination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(5), 1135-1148.
MLA Ma,Andy Jinhua,et al."Linear dependency modeling for classifier fusion and feature combination". IEEE Transactions on Pattern Analysis and Machine Intelligence 35.5(2013): 1135-1148.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma,Andy Jinhua]的文章
[Yuen,Pong C.]的文章
[Lai,Jian Huang]的文章
百度学术
百度学术中相似的文章
[Ma,Andy Jinhua]的文章
[Yuen,Pong C.]的文章
[Lai,Jian Huang]的文章
必应学术
必应学术中相似的文章
[Ma,Andy Jinhua]的文章
[Yuen,Pong C.]的文章
[Lai,Jian Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。