科研成果详情

题名An efficient algorithm for linear semi-infinite programming over positive polynomials
作者
发表日期2015
会议名称2015 International Symposium on Operations Research and Its Applications (ISORA)
会议录名称The 12th International Symposium on Operations Research and its Applications in engineering, technology and management (ISORA 2015)
会议录编者Xiang-Sun Zhang, Degang Liu, Ling-Yun Wu, and Yong Wang
ISBN978178561086
卷号2015
期号CP673
页码7-10
会议日期August 21–24, 2015
会议地点Luoyang, China
摘要

This paper describes an efficient implementation of a form of linear semi-infinite programming (LSIP). We look at maximizing (minimizing) a linear function over a set of constraints formed by positive trigonometric polynomials. Previous studies about LSIP are formulated using semi-definite programming (SDP), this is typically done by using the Kalman Yakubovich Popov (KYP) lemma or using a trace operation involving a Grammian matrix, which can be computationally expensive. The proposed algorithm is based on simplex method that directly solves the LSIP without any parameterization. Numerical results show that the proposed LISP algorithm is significantly more efficient than existing SDP solvers using KYP lemma and Grammian matrix, in both execution time and memory.

关键词Linear Semi-Infinite Programming Positive Trigonometric Polynomials Semi-Definite Programming Simplex Method
DOI10.1049/cp.2015.0602
URL查看来源
语种英语English
Scopus入藏号2-s2.0-84971324938
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6923
专题个人在本单位外知识产出
作者单位
South University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Xu, Meiling,Luo, Zongwei. An efficient algorithm for linear semi-infinite programming over positive polynomials[C]//Xiang-Sun Zhang, Degang Liu, Ling-Yun Wu, and Yong Wang, 2015: 7-10.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Meiling]的文章
[Luo, Zongwei]的文章
百度学术
百度学术中相似的文章
[Xu, Meiling]的文章
[Luo, Zongwei]的文章
必应学术
必应学术中相似的文章
[Xu, Meiling]的文章
[Luo, Zongwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。