科研成果详情

题名Urban mobility prediction based on LSTM and discrete position relationship model
作者
发表日期2020-12-01
会议名称16th IEEE International Conference on Mobility, Sensing and Networking (MSN)
会议录名称Proceedings - 2020 16th International Conference on Mobility, Sensing and Networking, MSN 2020
ISBN978-1-7281-9916-0
页码473-478
会议日期DEC 17-19, 2020
会议地点Electronic Network
摘要

In the context of edge and fog computing, urban mobility prediction acting as an important role in urban planning, traffic prediction, and resource reservation has making a great contribution for the construction of smart cities, and has been considered to be a challenging research and industrial topic for many years. Generally, those popular prediction methods abstract trajectories into independent points in the manner of gridding, clustering and others. However, these data processing methods make the position representation vector lose the connection relationship between geographic locations which is very important for the mobility prediction. To address this issue, this paper proposes a discrete position relationship model to represent the connection between geographic locations, on the basis, a Long Short Term Memory (LSTM) prediction model is established to predict the next position of the mobile target. Experiments and numerical analyses show that these investigations can take full advantage of the relationship between relative positions and reduce the prediction relative error.

关键词Discrete position relationship model LSTM Position prediction Urban mobility
DOI10.1109/MSN50589.2020.00081
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000682965600063
Scopus入藏号2-s2.0-85104601333
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/7104
专题个人在本单位外知识产出
作者单位
1.Dongguan University of Technology, School of Computer Science and Technology, Dongguan, China
2.School of Computer, Guangdong University of Technology, Guangzhou, China
3.Huaqiao University, College of Computer Science and Technology, Xiamen, China
推荐引用方式
GB/T 7714
Tao, Ming,Sun, Geng,Wang, Tian. Urban mobility prediction based on LSTM and discrete position relationship model[C], 2020: 473-478.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tao, Ming]的文章
[Sun, Geng]的文章
[Wang, Tian]的文章
百度学术
百度学术中相似的文章
[Tao, Ming]的文章
[Sun, Geng]的文章
[Wang, Tian]的文章
必应学术
必应学术中相似的文章
[Tao, Ming]的文章
[Sun, Geng]的文章
[Wang, Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。