科研成果详情

发表状态已发表Published
题名Decentralized Clustering by Finding Loose and Distributed Density Cores
作者
发表日期2018-04-01
发表期刊Information Sciences
ISSN/eISSN0020-0255
卷号433页码:510-526
摘要

Centroid-based clustering approaches fail to recognize extremely complex patterns that are non-isotropic. We analyze the underlying causes and find some inherent flaws in these approaches, including Shape Loss, False Distances and False Peaks, which typically cause centroid-based approaches to fail when applied to complex patterns. As an alternative to current methods, we propose a hybrid decentralized approach named DCore, which is based on finding density cores instead of centroids, to overcome these flaws. The underlying idea is that we consider each cluster to have a shrunken density core that roughly retains the shape of the cluster. Each such core consists of a set of loosely connected local density peaks of higher density than their surroundings. Borders, edges and outliers are distributed around the outsides of these cores in a hierarchical structure. Experiments demonstrate that the promise of DCore lies in its power to recognize extremely complex patterns and its high performance in real applications, for example, image segmentation and face clustering, regardless of the dimensionality of the space in which the data are embedded.

关键词Density cores False distances False peaks Local density peaks Shape loss
DOI10.1016/j.ins.2016.08.009
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000425198000031
Scopus入藏号2-s2.0-84981714778
引用统计
被引频次:54[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/7188
专题个人在本单位外知识产出
通讯作者Chen, Yewang
作者单位
1.College of Computer Science and Technology of Huaqiao University, 668 Jimei Avenue, Xiamen 362021, China
2.Shanghai Key Laboratory of Modern Optical Systems, University of Shanghai for Science and Technology, Shanghai 200093, China
3.Parallel Systems and Computer Architecture Lab, University of California, Irvine, CA 92697, United States
推荐引用方式
GB/T 7714
Chen, Yewang,Tang, Shengyu,Zhou, Lidaet al. Decentralized Clustering by Finding Loose and Distributed Density Cores[J]. Information Sciences, 2018, 433: 510-526.
APA Chen, Yewang., Tang, Shengyu., Zhou, Lida., Wang, Cheng., Du, Jixiang., .. & Pei, Songwen. (2018). Decentralized Clustering by Finding Loose and Distributed Density Cores. Information Sciences, 433, 510-526.
MLA Chen, Yewang,et al."Decentralized Clustering by Finding Loose and Distributed Density Cores". Information Sciences 433(2018): 510-526.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Yewang]的文章
[Tang, Shengyu]的文章
[Zhou, Lida]的文章
百度学术
百度学术中相似的文章
[Chen, Yewang]的文章
[Tang, Shengyu]的文章
[Zhou, Lida]的文章
必应学术
必应学术中相似的文章
[Chen, Yewang]的文章
[Tang, Shengyu]的文章
[Zhou, Lida]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。