发表状态 | 已发表Published |
题名 | Online learning 3D context for robust visual tracking |
作者 | |
发表日期 | 2015-03-05 |
发表期刊 | Neurocomputing
![]() |
ISSN/eISSN | 0925-2312 |
卷号 | 151期号:P2页码:710-718 |
摘要 | In this paper, we study the challenging problem of tracking single object in a complex dynamic scene. In contrast to most existing trackers which only exploit 2D color or gray images to learn the appearance model of the tracked object online, we take a different approach, inspired by the increased popularity of depth sensors, by putting more emphasis on the 3D Context to prevent model drift and handle occlusion. Specifically, we propose a 3D context-based object tracking method that learns a set of 3D context key-points, which have spatial-temporal co-occurrence correlations with the tracked object, for collaborative tracking in binocular video data. We first learn 3D context key-points via the spatial-temporal constrain in their spatial and depth coordinates. Then, the position of the object of interest is determined by a probability voting from the learnt 3D context key-points. Moreover, with depth information, a simple yet effective occlusion handling scheme is proposed to detect occlusion and recovery. Qualitative and quantitative experimental results on challenging video sequences demonstrate the robustness of the proposed method. |
关键词 | 3D context Depth information Visual tracking |
DOI | 10.1016/j.neucom.2014.06.083 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000347753500021 |
Scopus入藏号 | 2-s2.0-84919471582 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/7279 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Xie, Weibo |
作者单位 | 1.Department of Computer Science and Technology, Huaqiao University, Xiamen, China 2.Southeast University, Nanjing, China |
推荐引用方式 GB/T 7714 | Zhong, Bineng,Shen, Yingju,Chen, Yanet al. Online learning 3D context for robust visual tracking[J]. Neurocomputing, 2015, 151(P2): 710-718. |
APA | Zhong, Bineng., Shen, Yingju., Chen, Yan., Xie, Weibo., Cui, Zhen., .. & Zheng, Wenming. (2015). Online learning 3D context for robust visual tracking. Neurocomputing, 151(P2), 710-718. |
MLA | Zhong, Bineng,et al."Online learning 3D context for robust visual tracking". Neurocomputing 151.P2(2015): 710-718. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论