科研成果详情

发表状态已发表Published
题名Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions
作者
发表日期2020-05-01
发表期刊ESAIM: Mathematical Modelling and Numerical Analysis
ISSN/eISSN0764-583X
卷号54期号:3页码:957-976
摘要

This paper reports some interesting discoveries about the localization and geometrization phenomenon in plasmon resonances and the intrinsic geometric structures of Neumann-Poincaré eigenfunctions. It is known that plasmon resonance generically occurs in the quasi-static regime where the size of the plasmonic inclusion is sufficiently small compared to the wavelength. In this paper, we show that the global smallness condition on the plasmonic inclusion can be replaced by a local high-curvature condition, and the plasmon resonance occurs locally near the high-curvature point of the plasmonic inclusion. We link this phenomenon with the geometric structures of the Neumann-Poincaré (NP) eigenfunctions. The spectrum of the Neumann-Poincaré operator has received significant attentions in the literature. We show that the Neumann-Poincaré eigenfunctions possess some intrinsic geometric structures near the high-curvature points. We mainly rely on numerics to present our findings. For a particular case when the domain is an ellipse, we can provide the analytic results based on the explicit solutions.

关键词Geometrization High-curvature Localization Neumann-Poincaré eigenfunctions Plasmonics
DOI10.1051/m2an/2019091
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000528573900001
Scopus入藏号2-s2.0-85080890580
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/7947
专题个人在本单位外知识产出
理工科技学院
通讯作者Liu, Hongyu
作者单位
1.Department of Mathematics,University of Helsinki Helsinki,Finland
2.Department of Mathematics,Chinese University of Hong Kong,Shatin,Hong Kong
3.Department of Mathematics,City University of Hong Kong,Kowloon,Hong Kong
4.Department of Mathematics,Hong Kong Baptist University,Kowloon,Hong Kong
推荐引用方式
GB/T 7714
Blåsten, Emilia,Li, Hongjie,Liu, Hongyuet al. Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2020, 54(3): 957-976.
APA Blåsten, Emilia, Li, Hongjie, Liu, Hongyu, & Wang, Yuliang. (2020). Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions. ESAIM: Mathematical Modelling and Numerical Analysis, 54(3), 957-976.
MLA Blåsten, Emilia,et al."Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincaré eigenfunctions". ESAIM: Mathematical Modelling and Numerical Analysis 54.3(2020): 957-976.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Blåsten, Emilia]的文章
[Li, Hongjie]的文章
[Liu, Hongyu]的文章
百度学术
百度学术中相似的文章
[Blåsten, Emilia]的文章
[Li, Hongjie]的文章
[Liu, Hongyu]的文章
必应学术
必应学术中相似的文章
[Blåsten, Emilia]的文章
[Li, Hongjie]的文章
[Liu, Hongyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。