科研成果详情

题名XDeepFIG: An eXtreme Deep Model with Feature Interactions and Generation for CTR Prediction
作者
发表日期2021-11-19
会议名称2021 3rd International Conference on Big-data Service and Intelligent Computation
会议录名称ACM International Conference Proceeding Series
页码42-51
会议日期19-21 November, 2021.
会议地点HuaQiao University, Xiamen,China
摘要

In this paper, we propose an eXtreme deep model with feature interactions and generation for CTR prediction, called xDeepFIG. The feature generation module fully leverages some advantages of convolutional neural network (CNN) to generate new local and global features, and concatenates them with raw features. Such new fully fused features are shared by both the deep neural network (DNN) and compressed interaction network (CIN), which can learn both implicit and explicit high-order feature interactions automatically. Numerical results on two benchmark datasets for CTR demonstrates such feature fusion can bring some advantages and the xDeepFIG outperforms recent baseline models.

关键词CIN CTR DNN Explicit and implicit feature interaction Feature generation
DOI10.1145/3502300.3502306
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85124562360
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8303
专题理工科技学院
通讯作者Zhu, Shengxin
作者单位
1.Division of Science and Technology,BNU-HKBU United International College,China
2.Research Center for Mathematics,Beijing Normal University,Zhuhai,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Xu, Bokai,Bu, Shihan,Li, Xinyueet al. XDeepFIG: An eXtreme Deep Model with Feature Interactions and Generation for CTR Prediction[C], 2021: 42-51.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Bokai]的文章
[Bu, Shihan]的文章
[Li, Xinyue]的文章
百度学术
百度学术中相似的文章
[Xu, Bokai]的文章
[Bu, Shihan]的文章
[Li, Xinyue]的文章
必应学术
必应学术中相似的文章
[Xu, Bokai]的文章
[Bu, Shihan]的文章
[Li, Xinyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。