科研成果详情

发表状态已发表Published
题名Streaming Graph Embeddings via Incremental Neighborhood Sketching
作者
发表日期2022
发表期刊IEEE Transactions on Knowledge and Data Engineering
ISSN/eISSN1041-4347
摘要

Graph embeddings have become a key paradigm to learn node representations and facilitate downstream graph analysis tasks. Many real-world scenarios such as online social networks and communication networks involve streaming graphs, where edges connecting nodes are continuously received in a streaming manner, making the underlying graph structures evolve over time. Such a streaming graph raises great challenges for graph embedding techniques not only in capturing the structural dynamics of the graph, but also in efficiently accommodating high-speed edge streams. Against this background, we propose SGSketch, a highly-efficient streaming graph embedding technique via incremental neighborhood sketching. SGSketch cannot only generate high-quality node embeddings from a streaming graph by gradually forgetting outdated streaming edges, but also efficiently update the generated node embeddings via an incremental embedding updating mechanism. Our extensive evaluation compares SGSketch against a sizable collection of state-of-the-art techniques using both synthetic and real-world streaming graphs. The results show that SGSketch achieves superior performance on different graph analysis tasks, showing 31.9% and 21.9% improvement on average over the best-performing static and dynamic graph embedding baselines, respectively. Moreover, SGSketch is significantly more efficient in both embedding learning and incremental embedding updating processes, showing 54x-1813x and 118x-1955x speedup over the baseline techniques, respectively.

关键词Dynamic graph embedding Streaming graph Concept drift Data sketching Consistent weighted sampling
DOI10.1109/TKDE.2022.3149999
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000964880800065
Scopus入藏号2-s2.0-85124742718
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8951
专题理工科技学院
作者单位
1.Department of Computer and Information Science, University of Macau, 59193 Taipa, Macau, China
2.Division of Science and Technology, BNU-HKBU United International College, 125809 Zhuhai, Guangdong, China
3.Department of Software Technology, Technische Universiteit Delft, 2860 Delft, South Holland, Netherlands, 2628 CD
4.Department of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
5.Department of informatics, U. of Fribourg, Fribourg, Switzerland
推荐引用方式
GB/T 7714
Yang, Dingqi,Qu, Bingqing,Yang, Jieet al. Streaming Graph Embeddings via Incremental Neighborhood Sketching[J]. IEEE Transactions on Knowledge and Data Engineering, 2022.
APA Yang, Dingqi, Qu, Bingqing, Yang, Jie, Wang, Liang, & Cudre-Mauroux, Philipe. (2022). Streaming Graph Embeddings via Incremental Neighborhood Sketching. IEEE Transactions on Knowledge and Data Engineering.
MLA Yang, Dingqi,et al."Streaming Graph Embeddings via Incremental Neighborhood Sketching". IEEE Transactions on Knowledge and Data Engineering (2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Dingqi]的文章
[Qu, Bingqing]的文章
[Yang, Jie]的文章
百度学术
百度学术中相似的文章
[Yang, Dingqi]的文章
[Qu, Bingqing]的文章
[Yang, Jie]的文章
必应学术
必应学术中相似的文章
[Yang, Dingqi]的文章
[Qu, Bingqing]的文章
[Yang, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。