科研成果详情

发表状态已发表Published
题名High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics
作者
发表日期2021-02-15
发表期刊Journal of Computational Physics
ISSN/eISSN0021-9991
卷号427
摘要

In this paper, we propose a semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators (SLDG-RKEI) for nonlinear Vlasov dynamics. The commutator-free Runge-Kutta (RK) exponential integrators (EI) were proposed by Celledoni, et al. (FGCS, 2003). In the nonlinear transport setting, the RKEI can be used to decompose the evolution of the nonlinear transport into a composition of a sequence of linearized dynamics. The resulting linearized transport equations can be solved by the semi-Lagrangian (SL) discontinuous Galerkin (DG) method proposed in Cai, et al. (JSC, 2017). The proposed method can achieve high order spatial accuracy via the SLDG framework, and high order temporal accuracy via the RK EI. Due to the SL nature, the proposed SLDG-RKEI method is not subject to the CFL condition, thus they have the potential in using larger time-stepping sizes than those in the Eulerian approach. Inheriting advantages from the SLDG method, the proposed SLDG-RKEI schemes are mass conservative, positivity-preserving, have no dimensional splitting error, perform well in resolving complex solution structures, and can be evolved with adaptive time stepping sizes. We show the performance of the SLDG-RKEI algorithm by classical test problems for the nonlinear Vlasov-Poisson system, as well as the Guiding center Vlasov model. Though that it is not our focus of this paper to explore the SLDG-RKEI scheme for nonlinear hyperbolic conservation laws that develop shocks, we show some preliminary results on schemes' performance on the Burgers' equation.

关键词Discontinuous Galerkin Guiding center Vlasov model Mass conservative Runge-Kutta exponential integrators Semi-Lagrangian Vlasov-Poisson
DOI10.1016/j.jcp.2020.110036
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Physics
WOS类目Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号WOS:000613248000007
Scopus入藏号2-s2.0-85098120162
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8985
专题个人在本单位外知识产出
通讯作者Qiu, Jing-Mei
作者单位
1.Department of Mathematical Sciences,University of Delaware,Newark,19716,United States
2.Department of Mathematics and Computer Science,University of Catania,Catania,95127,Italy
推荐引用方式
GB/T 7714
Cai, Xiaofeng,Boscarino, Sebastiano,Qiu, Jing-Mei. High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics[J]. Journal of Computational Physics, 2021, 427.
APA Cai, Xiaofeng, Boscarino, Sebastiano, & Qiu, Jing-Mei. (2021). High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics. Journal of Computational Physics, 427.
MLA Cai, Xiaofeng,et al."High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics". Journal of Computational Physics 427(2021).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cai, Xiaofeng]的文章
[Boscarino, Sebastiano]的文章
[Qiu, Jing-Mei]的文章
百度学术
百度学术中相似的文章
[Cai, Xiaofeng]的文章
[Boscarino, Sebastiano]的文章
[Qiu, Jing-Mei]的文章
必应学术
必应学术中相似的文章
[Cai, Xiaofeng]的文章
[Boscarino, Sebastiano]的文章
[Qiu, Jing-Mei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。