发表状态 | 已发表Published |
题名 | Convergence analysis of exponential time differencing schemes for the cahn-hilliard equation |
作者 | |
发表日期 | 2019 |
发表期刊 | Communications in Computational Physics
![]() |
ISSN/eISSN | 1815-2406 |
卷号 | 26期号:5页码:1510-1529 |
摘要 | In this paper, we rigorously prove the convergence of fully discrete firstand second-order exponential time differencing schemes for solving the Cahn-Hilliard equation. Our analysesmainly followthe standard procedurewith the consistency and stability estimates for numerical error functions, while the technique of higher-order consistency analysis is adopted in order to obtain the uniform L boundedness of the numerical solutions under some moderate constraints on the time step and spatial mesh sizes. This paper provides a theoretical support for numerical analysis of exponential time differencing and other related numerical methods for phase field models, in which an assumption on the uniform L boundedness is usually needed. |
关键词 | Cahn-Hilliard equation Convergence analysis Exponential time differencing Uniform L∞ boundedness |
DOI | 10.4208/cicp.2019.js60.12 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Physics |
WOS类目 | Physics, Mathematical |
WOS记录号 | WOS:000483303500012 |
Scopus入藏号 | 2-s2.0-85071716537 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9009 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Ju, Lili |
作者单位 | Department of Mathematics,University of South Carolina,Columbia,29208,United States |
推荐引用方式 GB/T 7714 | Li, Xiao,Ju, Lili,Meng, Xucheng. Convergence analysis of exponential time differencing schemes for the cahn-hilliard equation[J]. Communications in Computational Physics, 2019, 26(5): 1510-1529. |
APA | Li, Xiao, Ju, Lili, & Meng, Xucheng. (2019). Convergence analysis of exponential time differencing schemes for the cahn-hilliard equation. Communications in Computational Physics, 26(5), 1510-1529. |
MLA | Li, Xiao,et al."Convergence analysis of exponential time differencing schemes for the cahn-hilliard equation". Communications in Computational Physics 26.5(2019): 1510-1529. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Xiao]的文章 |
[Ju, Lili]的文章 |
[Meng, Xucheng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Xiao]的文章 |
[Ju, Lili]的文章 |
[Meng, Xucheng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Xiao]的文章 |
[Ju, Lili]的文章 |
[Meng, Xucheng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论