科研成果详情

发表状态已发表Published
题名Content-based unsupervised segmentation of recurrent TV programs using grammatical inference
作者
发表日期2017-11-01
发表期刊Multimedia Tools and Applications
ISSN/eISSN1380-7501
卷号76期号:21页码:22569-22597
摘要

TV program segmentation raised as a major topic in the last decade for the task of high quality indexing of multimedia content. Earlier studies of TV program segmentation are either highly supervised (e.g., event detection) or too specific to a certain type of program (e.g., cluster-based methods), which is not practically usable for indexing tasks because of the lack of generality of programs types. In this paper, we address the problem of unsupervised TV program segmentation by leveraging grammatical inference, i.e., discovering a common structural model shared by a collection of episodes of a recurrent TV program by finding an optimal alignment of structural elements across episodes. Structural elements referring to a video segment with a particular syntactic meaning with respect to the video structure. The use of symbolic representation of structural elements makes grammatical inference feasible to be applied on TV program modeling, and makes TV program segmentation possible to rely on only minimal domain knowledge. The proposed approach is operated in two phases. The first phase aims at obtaining a symbolic representation of each episode, where the elements relevant to the structure are discovered based on recurrence mining. The second phase is that of grammatical inference from the symbolic representation of episodes. We investigate two inference techniques, one based on multiple sequence alignment and one relying on uniform resampling, to infer structural grammars for TV programs. A model of the structure is derived from the structural grammars and used to predict the structure of new episodes. Comparative evaluation on two grammar inference approaches demonstrates that the models obtained can reflect the structure of the program and predict the structure of unseen episodes, which is the main application of the proposed approach in industry, i.e., to assist librarians for segmentation tasks.

关键词Experimental evaluations Grammatical inference Hierarchical clustering Multimedia mining Multiple sequence alignment Practical applications Uniform resampling Video segmentation
DOI10.1007/s11042-017-4816-5
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000412748200035
Scopus入藏号2-s2.0-85019108964
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9017
专题个人在本单位外知识产出
通讯作者Qu, Bingqing
作者单位
1.Université de Rennes 1,Rennes,263 Avenue Général Leclerc,35000,France
2.Commission Nationale de l'Informatique et des Libertés (CNIL),Paris,France
3.Institut National de l'audiovisuel (INA),Paris,France
4.Centre National de la Recherche Scientifique (CNRS),Paris,France
推荐引用方式
GB/T 7714
Qu, Bingqing,Vallet, Félicien,Carrive, Jeanet al. Content-based unsupervised segmentation of recurrent TV programs using grammatical inference[J]. Multimedia Tools and Applications, 2017, 76(21): 22569-22597.
APA Qu, Bingqing, Vallet, Félicien, Carrive, Jean, & Gravier, Guillaume. (2017). Content-based unsupervised segmentation of recurrent TV programs using grammatical inference. Multimedia Tools and Applications, 76(21), 22569-22597.
MLA Qu, Bingqing,et al."Content-based unsupervised segmentation of recurrent TV programs using grammatical inference". Multimedia Tools and Applications 76.21(2017): 22569-22597.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Qu, Bingqing]的文章
[Vallet, Félicien]的文章
[Carrive, Jean]的文章
百度学术
百度学术中相似的文章
[Qu, Bingqing]的文章
[Vallet, Félicien]的文章
[Carrive, Jean]的文章
必应学术
必应学术中相似的文章
[Qu, Bingqing]的文章
[Vallet, Félicien]的文章
[Carrive, Jean]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。