科研成果详情

发表状态已发表Published
题名Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries
作者
发表日期2018-06-01
发表期刊Biometrika
ISSN/eISSN0006-3444
卷号105期号:2页码:371-388
摘要

Graphical Gaussian models with edge and vertex symmetries were introduced byHøjsgaard & Lauritzen (2008), who gave an algorithm for computing the maximum likelihood estimate of the precision matrix for such models. In this paper, we take a Bayesian approach to its estimation. We consider only models with symmetry constraints and which thus form a natural exponential family with the precision matrix as the canonical parameter. We identify the Diaconis-Ylvisaker conjugate prior for these models, develop a scheme to sample from the prior and posterior distributions, and thus obtain estimates of the posterior mean of the precision and covariance matrices. Such a sampling scheme is essential for model selection in coloured graphical Gaussian models. In order to verify the precision of our estimates, we derive an analytic expression for the expected value of the precision matrix when the graph underlying our model is a tree, a complete graph on three vertices, or a decomposable graph on four vertices with various symmetries, and we compare our estimates with the posterior mean of the precision matrix and the expected mean of the coloured graphical Gaussian model, that is, of the covariance matrix. We also verify the accuracy of our estimates on simulated data.

关键词Coloured graph Conditional independence Conjugate prior Covariance estimation Precision matrix Symmetry
DOI10.1093/biomet/asx084
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematics
WOS类目Biology ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号WOS:000434111200008
Scopus入藏号2-s2.0-85048690620
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9072
专题个人在本单位外知识产出
理工科技学院
通讯作者Massam, Hélène
作者单位
1.Department of Mathematics and Statistics,York University,Toronto,4700 Keele Street,M3J 1P3,Canada
2.School of Mathematics (Zhuhai),Sun Yat-sen University,Zhuhai, Guangdong,519082,China
推荐引用方式
GB/T 7714
Massam, Hélène,Li, Qiong,Gao, Xin. Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries[J]. Biometrika, 2018, 105(2): 371-388.
APA Massam, Hélène, Li, Qiong, & Gao, Xin. (2018). Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries. Biometrika, 105(2), 371-388.
MLA Massam, Hélène,et al."Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries". Biometrika 105.2(2018): 371-388.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Massam, Hélène]的文章
[Li, Qiong]的文章
[Gao, Xin]的文章
百度学术
百度学术中相似的文章
[Massam, Hélène]的文章
[Li, Qiong]的文章
[Gao, Xin]的文章
必应学术
必应学术中相似的文章
[Massam, Hélène]的文章
[Li, Qiong]的文章
[Gao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。