发表状态 | 已发表Published |
题名 | Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries |
作者 | |
发表日期 | 2018-06-01 |
发表期刊 | Biometrika
![]() |
ISSN/eISSN | 0006-3444 |
卷号 | 105期号:2页码:371-388 |
摘要 | Graphical Gaussian models with edge and vertex symmetries were introduced byHøjsgaard & Lauritzen (2008), who gave an algorithm for computing the maximum likelihood estimate of the precision matrix for such models. In this paper, we take a Bayesian approach to its estimation. We consider only models with symmetry constraints and which thus form a natural exponential family with the precision matrix as the canonical parameter. We identify the Diaconis-Ylvisaker conjugate prior for these models, develop a scheme to sample from the prior and posterior distributions, and thus obtain estimates of the posterior mean of the precision and covariance matrices. Such a sampling scheme is essential for model selection in coloured graphical Gaussian models. In order to verify the precision of our estimates, we derive an analytic expression for the expected value of the precision matrix when the graph underlying our model is a tree, a complete graph on three vertices, or a decomposable graph on four vertices with various symmetries, and we compare our estimates with the posterior mean of the precision matrix and the expected mean of the coloured graphical Gaussian model, that is, of the covariance matrix. We also verify the accuracy of our estimates on simulated data. |
关键词 | Coloured graph Conditional independence Conjugate prior Covariance estimation Precision matrix Symmetry |
DOI | 10.1093/biomet/asx084 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematics |
WOS类目 | Biology ; Mathematical & Computational Biology ; Statistics & Probability |
WOS记录号 | WOS:000434111200008 |
Scopus入藏号 | 2-s2.0-85048690620 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9072 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Massam, Hélène |
作者单位 | 1.Department of Mathematics and Statistics,York University,Toronto,4700 Keele Street,M3J 1P3,Canada 2.School of Mathematics (Zhuhai),Sun Yat-sen University,Zhuhai, Guangdong,519082,China |
推荐引用方式 GB/T 7714 | Massam, Hélène,Li, Qiong,Gao, Xin. Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries[J]. Biometrika, 2018, 105(2): 371-388. |
APA | Massam, Hélène, Li, Qiong, & Gao, Xin. (2018). Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries. Biometrika, 105(2), 371-388. |
MLA | Massam, Hélène,et al."Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries". Biometrika 105.2(2018): 371-388. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论