科研成果详情

题名Exploring Sentence Community for Document-Level Event Extraction
作者
发表日期2021
会议名称2021 Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021
会议录名称Findings of the Association for Computational Linguistics, Findings of ACL: EMNLP 2021
会议录编者Moens M.-F., Huang X., Specia L., Yih S.W.-T.
ISBN978-195591710-0
页码340-351
会议日期NOV 07-11, 2021
会议地点Punta Cana
摘要

Document-level event extraction is critical to various natural language processing tasks for providing structured information. Existing approaches by sequential modeling neglect the complex logic structures for long texts. In this paper, we leverage the entity interactions and sentence interactions within long documents, and transform each document into an undirected unweighted graph by exploiting the relationship between sentences. We introduce the Sentence Community to represent each event as a subgraph. Furthermore, our framework SCDEE maintains the ability to extract multiple events by sentence community detection using graph attention networks and alleviate the role overlapping issue by predicting arguments in terms of roles. Experiments demonstrate that our framework achieves competitive results over state-of-the-art methods on the large-scale document-level event extraction dataset.

URL查看来源
语种英语English
Scopus入藏号2-s2.0-85122423560
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9366
专题理工科技学院
通讯作者Jia, Weijia
作者单位
1.Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
2.BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University,Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-HKBU United International College, China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Huang, Yusheng,Jia, Weijia. Exploring Sentence Community for Document-Level Event Extraction[C]//Moens M.-F., Huang X., Specia L., Yih S.W.-T., 2021: 340-351.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Yusheng]的文章
[Jia, Weijia]的文章
百度学术
百度学术中相似的文章
[Huang, Yusheng]的文章
[Jia, Weijia]的文章
必应学术
必应学术中相似的文章
[Huang, Yusheng]的文章
[Jia, Weijia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。