科研成果详情

发表状态已发表Published
题名Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Numerical Applications
作者
发表日期2022-03-01
发表期刊Methodology and Computing in Applied Probability
ISSN/eISSN1387-5841
卷号24期号:1页码:143-178
摘要

This paper presents several numerical applications of deep learning-based algorithms for discrete-time stochastic control problems in finite time horizon that have been introduced in Huré et al. (2018). Numerical and comparative tests using TensorFlow illustrate the performance of our different algorithms, namely control learning by performance iteration (algorithms NNcontPI and ClassifPI), control learning by hybrid iteration (algorithms Hybrid-Now and Hybrid-LaterQ), on the 100-dimensional nonlinear PDEs examples from Weinan et al. (2017) and on quadratic backward stochastic differential equations as in Chassagneux and Richou (2016). We also performed tests on low-dimension control problems such as an option hedging problem in finance, as well as energy storage problems arising in the valuation of gas storage and in microgrid management. Numerical results and comparisons to quantization-type algorithms Qknn, as an efficient algorithm to numerically solve low-dimensional control problems, are also provided.

关键词Deep learning Monte Carlo Performance iteration Policy learning Quantization Value iteration
DOI10.1007/s11009-019-09767-9
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000608970800001
Scopus入藏号2-s2.0-85099567833
引用统计
被引频次:35[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9638
专题个人在本单位外知识产出
通讯作者Pham, Huyên
作者单位
1.School of Education,Culture and Communication (UKK)/Division of Mathematics and Physics,Mälardalen University,Västerås,Sweden
2.LPSM,University Paris Diderot,Paris,France
3.CSIRO Data61,RiskLab Australia,Docklands,Australia
4.CREST-ENSAE,Paris,France
推荐引用方式
GB/T 7714
Bachouch, Achref,Huré, Côme,Langrené, Nicolaset al. Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Numerical Applications[J]. Methodology and Computing in Applied Probability, 2022, 24(1): 143-178.
APA Bachouch, Achref, Huré, Côme, Langrené, Nicolas, & Pham, Huyên. (2022). Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Numerical Applications. Methodology and Computing in Applied Probability, 24(1), 143-178.
MLA Bachouch, Achref,et al."Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Numerical Applications". Methodology and Computing in Applied Probability 24.1(2022): 143-178.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bachouch, Achref]的文章
[Huré, Côme]的文章
[Langrené, Nicolas]的文章
百度学术
百度学术中相似的文章
[Bachouch, Achref]的文章
[Huré, Côme]的文章
[Langrené, Nicolas]的文章
必应学术
必应学术中相似的文章
[Bachouch, Achref]的文章
[Huré, Côme]的文章
[Langrené, Nicolas]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。