科研成果详情

发表状态已发表Published
题名Fast multivariate empirical cumulative distribution function with connection to kernel density estimation
作者
发表日期2021-10-01
发表期刊Computational Statistics and Data Analysis
ISSN/eISSN0167-9473
卷号162
摘要

The problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets, is revisited. Computing an ECDF at one evaluation point requires O(N) operations on a dataset composed of N data points. Therefore, a direct evaluation of ECDFs at N evaluation points requires a quadratic O(N) operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a O(Nlog⁡N) complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a O(Nlog⁡(N)) complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general d-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, a direct connection between cumulative distribution functions and kernel density estimation (KDE) is established for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods.

关键词Empirical distribution function Fast CDF Fast KDE Fast kernel summation Nonparametric copula estimation Survival function
DOI10.1016/j.csda.2021.107267
URL查看来源
收录类别SCIE ; SSCI
语种英语English
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号WOS:000656685900002
Scopus入藏号2-s2.0-85106438590
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9644
专题个人在本单位外知识产出
通讯作者Langrené, Nicolas
作者单位
1.CSIRO Data61,Australia
2.EDF Lab,FiME,France
推荐引用方式
GB/T 7714
Langrené, Nicolas,Warin, Xavier. Fast multivariate empirical cumulative distribution function with connection to kernel density estimation[J]. Computational Statistics and Data Analysis, 2021, 162.
APA Langrené, Nicolas, & Warin, Xavier. (2021). Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. Computational Statistics and Data Analysis, 162.
MLA Langrené, Nicolas,et al."Fast multivariate empirical cumulative distribution function with connection to kernel density estimation". Computational Statistics and Data Analysis 162(2021).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Langrené, Nicolas]的文章
[Warin, Xavier]的文章
百度学术
百度学术中相似的文章
[Langrené, Nicolas]的文章
[Warin, Xavier]的文章
必应学术
必应学术中相似的文章
[Langrené, Nicolas]的文章
[Warin, Xavier]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。