发表状态 | 已发表Published |
题名 | Fast multivariate empirical cumulative distribution function with connection to kernel density estimation |
作者 | |
发表日期 | 2021-10-01 |
发表期刊 | Computational Statistics and Data Analysis
![]() |
ISSN/eISSN | 0167-9473 |
卷号 | 162 |
摘要 | The problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets, is revisited. Computing an ECDF at one evaluation point requires O(N) operations on a dataset composed of N data points. Therefore, a direct evaluation of ECDFs at N evaluation points requires a quadratic O(N) operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a O(NlogN) complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a O(Nlog(N)) complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general d-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, a direct connection between cumulative distribution functions and kernel density estimation (KDE) is established for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods. |
关键词 | Empirical distribution function Fast CDF Fast KDE Fast kernel summation Nonparametric copula estimation Survival function |
DOI | 10.1016/j.csda.2021.107267 |
URL | 查看来源 |
收录类别 | SCIE ; SSCI |
语种 | 英语English |
WOS研究方向 | Computer Science ; Mathematics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Statistics & Probability |
WOS记录号 | WOS:000656685900002 |
Scopus入藏号 | 2-s2.0-85106438590 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9644 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Langrené, Nicolas |
作者单位 | 1.CSIRO Data61,Australia 2.EDF Lab,FiME,France |
推荐引用方式 GB/T 7714 | Langrené, Nicolas,Warin, Xavier. Fast multivariate empirical cumulative distribution function with connection to kernel density estimation[J]. Computational Statistics and Data Analysis, 2021, 162. |
APA | Langrené, Nicolas, & Warin, Xavier. (2021). Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. Computational Statistics and Data Analysis, 162. |
MLA | Langrené, Nicolas,et al."Fast multivariate empirical cumulative distribution function with connection to kernel density estimation". Computational Statistics and Data Analysis 162(2021). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Langrené, Nicolas]的文章 |
[Warin, Xavier]的文章 |
百度学术 |
百度学术中相似的文章 |
[Langrené, Nicolas]的文章 |
[Warin, Xavier]的文章 |
必应学术 |
必应学术中相似的文章 |
[Langrené, Nicolas]的文章 |
[Warin, Xavier]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论