题名 | Versatile and Robust Transient Stability Assessment via Instance Transfer Learning |
作者 | |
发表日期 | 2021 |
会议名称 | IEEE-Power-and-Energy-Society General Meeting (PESGM) |
会议录名称 | IEEE Power and Energy Society General Meeting
![]() |
ISSN | 1944-9925 |
卷号 | 2021-July |
会议日期 | JUL 26-29, 2021 |
会议地点 | Washington, DC |
摘要 | To support N-1 pre-fault transient stability assessment, this paper introduces a new data collection method in a data-driven algorithm incorporating the knowledge of power system dynamics. The domain knowledge on how the disturbance effect will propagate from the fault location to the rest of the network is leveraged to recognise the dominant conditions that determine the stability of a system. Accordingly, we introduce a new concept called Fault-Affected Area, which provides crucial information regarding the unstable region of operation. This information is embedded in an augmented dataset to train an ensemble model using an instance transfer learning framework. The test results on the IEEE 39-bus system verify that this model can accurately predict the stability of previously unseen operational scenarios while reducing the risk of false prediction of unstable instances compared to standard approaches. |
关键词 | machine learning power system dynamics transfer learning Transient stability assessment |
DOI | 10.1109/PESGM46819.2021.9638195 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Energy & Fuels ; Engineering |
WOS类目 | Energy & Fuels ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000821942400377 |
Scopus入藏号 | 2-s2.0-85124157668 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9647 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.Faculty of Information Technology,Monash University,Department of Data Science and AI,Australia 2.Data61,Commonwealth Scientific and Industrial Research Organisation (CSIRO),Melbourne,Australia |
推荐引用方式 GB/T 7714 | Meghdadi, Seyedali,Tack, Guido,Liebman, Arielet al. Versatile and Robust Transient Stability Assessment via Instance Transfer Learning[C], 2021. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论