科研成果详情

发表状态已发表Published
题名Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis
作者
发表日期2021
发表期刊SIAM Journal on Numerical Analysis
ISSN/eISSN0036-1429
卷号59期号:1页码:525-557
摘要

This paper develops algorithms for high-dimensional stochastic control problems based on deep learning and dynamic programming. Unlike classical approximate dynamic programming approaches, we first approximate the optimal policy by means of neural networks in the spirit of deep reinforcement learning, and then the value function by Monte Carlo regression. This is achieved in the dynamic programming recursion by performance or hybrid iteration and regress-now methods from numerical probabilities. We provide a theoretical justification of these algorithms. Consistency and rate of convergence for the control and value function estimates are analyzed and expressed in terms of the universal approximation error of the neural networks, and of the statistical error when estimating network function, leaving aside the optimization error. Numerical results on various applications are presented in a companion paper [Deep neural networks algorithms for stochastic control problems on finite horizon: Numerical applications, Methodol. Comput. Appl. Probab., to appear] and illustrate the performance of the proposed algorithms.

关键词Convergence analysis Deep learning Dynamic programming Performance iteration Regress-now Statistical risk
DOI10.1137/20M1316640
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000625044600021
Scopus入藏号2-s2.0-85102664711
引用统计
被引频次:42[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9648
专题个人在本单位外知识产出
作者单位
1.LPSM,Université de Paris (Paris Diderot),CREST-ENSAE,Paris Cedex 13,75205,France
2.Division of Mathematics and Physics,Mälardalen University (UKK),Västerrås,721 23,Sweden
3.Data61,CSIRO,Docklands,3008,Australia
推荐引用方式
GB/T 7714
Huré, Côme,Pham, Huyén,Bachouch, Achrefet al. Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis[J]. SIAM Journal on Numerical Analysis, 2021, 59(1): 525-557.
APA Huré, Côme, Pham, Huyén, Bachouch, Achref, & Langrené, Nicolas. (2021). Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis. SIAM Journal on Numerical Analysis, 59(1), 525-557.
MLA Huré, Côme,et al."Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis". SIAM Journal on Numerical Analysis 59.1(2021): 525-557.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huré, Côme]的文章
[Pham, Huyén]的文章
[Bachouch, Achref]的文章
百度学术
百度学术中相似的文章
[Huré, Côme]的文章
[Pham, Huyén]的文章
[Bachouch, Achref]的文章
必应学术
必应学术中相似的文章
[Huré, Côme]的文章
[Pham, Huyén]的文章
[Bachouch, Achref]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。