发表状态 | 已发表Published |
题名 | Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis |
作者 | |
发表日期 | 2021 |
发表期刊 | SIAM Journal on Numerical Analysis
![]() |
ISSN/eISSN | 0036-1429 |
卷号 | 59期号:1页码:525-557 |
摘要 | This paper develops algorithms for high-dimensional stochastic control problems based on deep learning and dynamic programming. Unlike classical approximate dynamic programming approaches, we first approximate the optimal policy by means of neural networks in the spirit of deep reinforcement learning, and then the value function by Monte Carlo regression. This is achieved in the dynamic programming recursion by performance or hybrid iteration and regress-now methods from numerical probabilities. We provide a theoretical justification of these algorithms. Consistency and rate of convergence for the control and value function estimates are analyzed and expressed in terms of the universal approximation error of the neural networks, and of the statistical error when estimating network function, leaving aside the optimization error. Numerical results on various applications are presented in a companion paper [Deep neural networks algorithms for stochastic control problems on finite horizon: Numerical applications, Methodol. Comput. Appl. Probab., to appear] and illustrate the performance of the proposed algorithms. |
关键词 | Convergence analysis Deep learning Dynamic programming Performance iteration Regress-now Statistical risk |
DOI | 10.1137/20M1316640 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000625044600021 |
Scopus入藏号 | 2-s2.0-85102664711 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9648 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.LPSM,Université de Paris (Paris Diderot),CREST-ENSAE,Paris Cedex 13,75205,France 2.Division of Mathematics and Physics,Mälardalen University (UKK),Västerrås,721 23,Sweden 3.Data61,CSIRO,Docklands,3008,Australia |
推荐引用方式 GB/T 7714 | Huré, Côme,Pham, Huyén,Bachouch, Achrefet al. Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis[J]. SIAM Journal on Numerical Analysis, 2021, 59(1): 525-557. |
APA | Huré, Côme, Pham, Huyén, Bachouch, Achref, & Langrené, Nicolas. (2021). Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis. SIAM Journal on Numerical Analysis, 59(1), 525-557. |
MLA | Huré, Côme,et al."Deep neural networks algorithms for stochastic control problems on finite horizon: Convergence analysis". SIAM Journal on Numerical Analysis 59.1(2021): 525-557. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论