科研成果详情

发表状态已发表Published
题名Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method
作者
发表日期2019-06-01
发表期刊Journal of Computational Finance
ISSN/eISSN1460-1559
卷号23期号:1页码:97-127
摘要

In this paper, we propose a novel investment strategy for portfolio optimization problems. The proposed strategy maximizes the expected portfolio value bounded within a targeted range, composed of a conservative lower target representing a need for capital protection and a desired upper target representing an investment goal. This strategy favorably shapes the entire probability distribution of returns, as it simultaneously seeks a desired expected return, cuts off downside risk and implicitly caps volatility and higher moments. To illustrate the effectiveness of this investment strategy, we study a multiperiod portfolio optimization problem with transaction costs and develop a two-stage regression approach that improves the classical least squares Monte Carlo (LSMC) algorithm when dealing with difficult payoffs, such as highly concave, abruptly changing or discontinuous functions. Our numerical results show substantial improvements over the classical LSMC algorithm for both the constant relative risk-aversion (CRRA) utility approach and the proposed skewed target range strategy (STRS). Our numerical results illustrate the ability of the STRS to contain the portfolio value within the targeted range. When compared with the CRRA utility approach, the STRS achieves a similar mean–variance efficient frontier while delivering a better downside risk–return trade-off.

关键词Alternative performance measure Least squares Monte Carlo Multiperiod portfolio optimization Target-based portfolio optimization Two-stage regression
DOI10.21314/JCF.2019.368
URL查看来源
收录类别SSCI
语种英语English
WOS研究方向Business & Economics
WOS类目Business, Finance
WOS记录号WOS:000487747600005
Scopus入藏号2-s2.0-85069744088
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9651
专题个人在本单位外知识产出
通讯作者Zhang, Rongju
作者单位
1.Centre for Quantitative Finance and Investment Strategies,Monash University,Clayton,9 Rainforest Walk,3800,Australia
2.CSIRO Data61,RiskLab Australia,Door 34, Goods Shed, Village Street, Docklands,3008,Australia
推荐引用方式
GB/T 7714
Zhang, Rongju,Langrené, Nicolas,Tian, Yuet al. Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method[J]. Journal of Computational Finance, 2019, 23(1): 97-127.
APA Zhang, Rongju, Langrené, Nicolas, Tian, Yu, Zhu, Zili, Klebaner, Fima, & Hamza, Kais. (2019). Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method. Journal of Computational Finance, 23(1), 97-127.
MLA Zhang, Rongju,et al."Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method". Journal of Computational Finance 23.1(2019): 97-127.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Rongju]的文章
[Langrené, Nicolas]的文章
[Tian, Yu]的文章
百度学术
百度学术中相似的文章
[Zhang, Rongju]的文章
[Langrené, Nicolas]的文章
[Tian, Yu]的文章
必应学术
必应学术中相似的文章
[Zhang, Rongju]的文章
[Langrené, Nicolas]的文章
[Tian, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。