发表状态 | 已发表Published |
题名 | Adaptive approximation of higher order posterior statistics |
作者 | |
发表日期 | 2014-02-01 |
发表期刊 | Journal of Computational Physics
![]() |
ISSN/eISSN | 0021-9991 |
卷号 | 258页码:833-855 |
摘要 | Filtering is an approach for incorporating observed data into time-evolving systems. Instead of a family of Dirac delta masses that is widely used in Monte Carlo methods, we here use the Wiener chaos expansion for the parametrization of the conditioned probability distribution to solve the nonlinear filtering problem. The Wiener chaos expansion is not the best method for uncertainty propagation without observations. Nevertheless, the projection of the system variables in a fixed polynomial basis spanning the probability space might be a competitive representation in the presence of relatively frequent observations because the Wiener chaos approach not only leads to an accurate and efficient prediction for short time uncertainty quantification, but it also allows to apply several data assimilation methods that can be used to yield a better approximate filtering solution. The aim of the present paper is to investigate this hypothesis. We answer in the affirmative for the (stochastic) Lorenz-63 system based on numerical simulations in which the uncertainty quantification method and the data assimilation method are adaptively selected by whether the dynamics is driven by Brownian motion and the near-Gaussianity of the measure to be updated, respectively. © 2013 Elsevier Inc. |
关键词 | Data assimilation Nonlinear filtering Uncertainty quantification Wiener chaos expansion |
DOI | 10.1016/j.jcp.2013.11.015 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science ; Physics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Physics, Mathematical |
WOS记录号 | WOS:000329118500044 |
Scopus入藏号 | 2-s2.0-84888791300 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9772 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Lee, Wonjung |
作者单位 | Oxford Centre for Collaborative Applied Mathematics (OCCAM),Mathematical Institute,University of Oxford,24-29 St Giles',Oxford, OX1 3LB,United Kingdom |
推荐引用方式 GB/T 7714 | Lee, Wonjung. Adaptive approximation of higher order posterior statistics[J]. Journal of Computational Physics, 2014, 258: 833-855. |
APA | Lee, Wonjung. (2014). Adaptive approximation of higher order posterior statistics. Journal of Computational Physics, 258, 833-855. |
MLA | Lee, Wonjung."Adaptive approximation of higher order posterior statistics". Journal of Computational Physics 258(2014): 833-855. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Lee, Wonjung]的文章 |
百度学术 |
百度学术中相似的文章 |
[Lee, Wonjung]的文章 |
必应学术 |
必应学术中相似的文章 |
[Lee, Wonjung]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论