科研成果详情

发表状态已发表Published
题名Energy Plus Maximum Bound Preserving Runge–Kutta Methods for the Allen–Cahn Equation
作者
发表日期2022-09
发表期刊Journal of Scientific Computing
ISSN/eISSN0885-7474
卷号92期号:3
摘要

It is difficult to design high order numerical schemes which could preserve both the maximum bound property (MBP) and energy dissipation law for certain phase field equations. Strong stability preserving (SSP) Runge–Kutta methods have been developed for numerical solution of hyperbolic partial differential equations in the past few decades, where strong stability means the non-increasing of the maximum bound of the underlying solutions. However, existing framework of SSP RK methods can not handle nonlinear stabilities like energy dissipation law. The aim of this work is to extend this SSP theory to deal with the nonlinear phase field equation of the Allen–Cahn type which typically satisfies both maximum bound preserving (MBP) and energy dissipation law. More precisely, for Runge–Kutta time discretizations, we first derive a general necessary and sufficient condition under which MBP is satisfied; and we further provide a necessary condition under which the MBP scheme satisfies energy dissipation.

关键词Allen–Cahn equation Energy dissipation law Maximum principle Runge–Kutta methods
DOI10.1007/s10915-022-01940-6
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000834864600008
Scopus入藏号2-s2.0-85135381346
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9798
专题理工科技学院
通讯作者Yang, Jiang
作者单位
1.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Mathematics,University of British Columbia,Vancouver,Canada
3.Division of Science and Technology,BNU-HKBU United International College,Zhuhai,519000,China
4.SUSTech International Center for Mathematics & National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Fu, Zhaohui,Tang, Tao,Yang, Jiang. Energy Plus Maximum Bound Preserving Runge–Kutta Methods for the Allen–Cahn Equation[J]. Journal of Scientific Computing, 2022, 92(3).
APA Fu, Zhaohui, Tang, Tao, & Yang, Jiang. (2022). Energy Plus Maximum Bound Preserving Runge–Kutta Methods for the Allen–Cahn Equation. Journal of Scientific Computing, 92(3).
MLA Fu, Zhaohui,et al."Energy Plus Maximum Bound Preserving Runge–Kutta Methods for the Allen–Cahn Equation". Journal of Scientific Computing 92.3(2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
百度学术
百度学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
必应学术
必应学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。