科研成果详情

题名DiGAN: Directional Generative Adversarial Network for Object Transfiguration
作者
发表日期2022-06-27
会议名称2022 International Conference on Multimedia Retrieval, ICMR 2022
会议录名称ICMR 2022 - Proceedings of the 2022 International Conference on Multimedia Retrieval
ISBN9781450392389
页码471-479
会议日期June 27-30, 2022
会议地点Newark
摘要

The concept of cycle consistency in couple mapping has helped CycleGAN illustrate remarkable performance in the context of image-to-image translation. However, its limitations in object transfiguration have not been ideally solved yet. In order to alleviate previous problems of wrong transformation position, degeneration, and artifacts, this work presents a new approach called Directional Generative Adversarial Network (DiGAN) in the field of object transfiguration. The major contribution of this work is threefold. First, paired directional generators are designed for both intra-domain and inter-domain generations. Second, a segmentation network based on Mask R-CNN is introduced to build conditional inputs for both generators and discriminators. Third, a feature loss and a segmentation loss are added to optimize the model. Experimental results indicate that DiGAN surpasses CycleGAN and AttentionGAN by 17.2% and 60.9% higher on Inception Score, 15.5% and 2.05% lower on Fréchet Inception Distance, and 14.2% and 15.6% lower on VGG distance, respectively, in horse-to-zebra mapping.

关键词cycle consistency feature consistency generative adversarial network object transfiguration segment-conditional generation
DOI10.1145/3512527.3531400
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85134068668
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9834
专题理工科技学院
通讯作者Chen, Donglong
作者单位
1.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,China
2.School of Computer Science,Fudan University,Shanghai,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Luo, Zhen,Zhang, Yingfang,Zhong, Peihaoet al. DiGAN: Directional Generative Adversarial Network for Object Transfiguration[C], 2022: 471-479.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Luo, Zhen]的文章
[Zhang, Yingfang]的文章
[Zhong, Peihao]的文章
百度学术
百度学术中相似的文章
[Luo, Zhen]的文章
[Zhang, Yingfang]的文章
[Zhong, Peihao]的文章
必应学术
必应学术中相似的文章
[Luo, Zhen]的文章
[Zhang, Yingfang]的文章
[Zhong, Peihao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。