发表状态 | 已发表Published |
题名 | Modeling topic control to detect influence in conversations using nonparametric topic models |
作者 | |
发表日期 | 2014 |
发表期刊 | Machine Learning
![]() |
ISSN/eISSN | 0885-6125 |
卷号 | 95期号:3页码:381-421 |
摘要 | Identifying influential speakers in multi-party conversations has been the focus of research in communication, sociology, and psychology for decades. It has been long acknowledged qualitatively that controlling the topic of a conversation is a sign of influence. To capture who introduces new topics in conversations, we introduce SITS - Speaker Identity for Topic Segmentation - a nonparametric hierarchical Bayesian model that is capable of discovering (1) the topics used in a set of conversations, (2) how these topics are shared across conversations, (3) when these topics change during conversations, and (4) a speaker-specific measure of "topic control". We validate the model via evaluations using multiple datasets, including work meetings, online discussions, and political debates. Experimental results confirm the effectiveness of SITS in both intrinsic and extrinsic evaluations. © 2013 The Author(s). |
关键词 | Bayesian nonparametrics Gibbs sampling Influencer detection Topic modeling Topic segmentation |
DOI | 10.1007/s10994-013-5417-9 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000336034000006 |
Scopus入藏号 | 2-s2.0-84901483574 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9870 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Nguyen, Viet An |
作者单位 | 1.Department of Computer Science, University of Maryland,College Park, MD,United States 2.ISchool, UMIACS, University of Maryland,College Park, MD,United States 3.Department of Linguistics and UMIACS, University of Maryland,College Park, MD,United States 4.School of Media and Communication, Temple University,Philadelphia, PA,United States |
推荐引用方式 GB/T 7714 | Nguyen, Viet An,Boyd-Graber, Jordan,Resnik, Philipet al. Modeling topic control to detect influence in conversations using nonparametric topic models[J]. Machine Learning, 2014, 95(3): 381-421. |
APA | Nguyen, Viet An, Boyd-Graber, Jordan, Resnik, Philip, Cai, Deborah A., Midberry, Jennifer E., & Wang, Yuanxin. (2014). Modeling topic control to detect influence in conversations using nonparametric topic models. Machine Learning, 95(3), 381-421. |
MLA | Nguyen, Viet An,et al."Modeling topic control to detect influence in conversations using nonparametric topic models". Machine Learning 95.3(2014): 381-421. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论