×
验证码:
换一张
忘记密码?
记住我
×
登录
中文
|
English
学校主页
|
图书馆
登录
注册
首页
学术成果
学院
学者
数据分析
检索
ALL
ORCID
题名
作者
发表日期
关键词
文献类型
原始文献类型
收录类别
出版者
状态
学院
个人在本单位外知识产出
19
作者
汤涛
16
吴奖伦
2
蔡晓峰
1
文献类型
期刊论文
18
会议论文
1
发表日期
2020
1
2018
1
2016
1
2007
3
2006
1
2004
1
更多...
语种
英语English
19
收录类别
SCIE
16
CPCI-S
1
资助机构
关键词
Conservation laws
7
Error estimates
4
Hyperbolic conservation laws
4
Optimal convergence rate
3
Finite volume method
2
Maximum principle
2
更多...
出处
SIAM Journal on Numerical A...
5
Journal of Scientific Compu...
3
Journal of Hyperbolic Diffe...
2
Annals of Applied Probabili...
1
Bulletin des Sciences Mathe...
1
Communication on Mathematic...
1
更多...
资助项目
×
知识图谱
反馈留言
浏览/检索结果:共19条,第1-10条
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
发表日期升序
发表日期降序
作者升序
作者降序
期刊影响因子升序
期刊影响因子降序
题名升序
题名降序
提交时间升序
提交时间降序
WOS被引频次升序
WOS被引频次降序
Large deviation principles for first-order scalar conservation laws with stochastic forcing
期刊论文
Annals of Applied Probability,2020, 卷号: 30, 期号: 1, 页码: 324-367
作者:
Dong, Zhao
;
Wu, Jianglun
;
Zhang, Rangrang
;
Zhang, Tusheng
收藏
  |  
浏览/下载:8/0
  |  
提交时间:2023/05/30
First-order conservation laws
Kinetic solution
Large deviations
Weak convergence approach
Finite Volume HWENO Schemes for Nonconvex Conservation Laws
期刊论文
Journal of Scientific Computing,2018, 卷号: 75, 期号: 1, 页码: 65-82
作者:
Cai, Xiaofeng
;
Qiu, Jianxian
;
Qiu, Jing-Mei
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2022/05/10
Entropic projection
Entropy solution
Finite volume HWENO scheme
Nonconvex conservation laws
On a stochastic nonlocal conservation law in a bounded domain
期刊论文
Bulletin des Sciences Mathematiques,2016, 卷号: 140, 期号: 6, 页码: 718-746
作者:
Lv, Guangying
;
Duan, Jinqiao
;
Gao, Hongjun
;
Wu, Jianglun
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2023/05/30
Anomalous diffusion
Conservation laws
Itô's formula
Stochastic Burgers equation
On the piecewise smoothness of entropy solutions to scalar conservation laws for a large class of initial data
期刊论文
Journal of Hyperbolic Differential Equations,2007, 卷号: 4, 期号: 3, 页码: 369-389
作者:
Tang, Tao
;
Wang, Jinghua
;
Zhao, Yinchuan
收藏
  |  
浏览/下载:6/0
  |  
提交时间:2021/08/06
Piecewise smooth solutions
conservation laws
a set of first category
On the piecewise smoothness of entropy solutions to scalar conservation laws for a larger class of initial data
期刊论文
Journal of Hyperbolic Differential Equations,2007, 卷号: 4, 期号: 3, 页码: 369-389
作者:
Tang, Tao
;
Wang, Jinghua
;
Zhao, Yinchuan
收藏
  |  
浏览/下载:9/0
  |  
提交时间:2021/05/10
A set of first category
Conservation laws
Piecewise smooth solutions
Superconvergence of monotone difference schemes for piecewise smooth solutions of convex conservation laws
期刊论文
Hokkaido Mathematical Journal,2007, 卷号: 36, 期号: 4, 页码: 849-874
作者:
Tang, Tao
;
Teng, Zhenhuan
收藏
  |  
浏览/下载:7/0
  |  
提交时间:2021/05/10
Conservation laws
Finite difference
Monotone scheme
Superconvergence
Moving mesh discontinuous galerkin method for hyperbolic conservation laws
会议论文
Journal of Scientific Computing, Brown University, Providence, Rhode Island, USA, June 21–25, 2004
作者:
Li, Ruo
;
Tang, Tao
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2021/07/14
Discontinuous Galerkin method
Monitor function
Moving mesh method
Nonlinear conservation laws
Moving mesh methods with locally varying time steps
期刊论文
Journal of Computational Physics,2004, 卷号: 200, 期号: 1, 页码: 347-367
作者:
Tan, Zhijun
;
Zhang, Zhengru
;
Huang, Yunqing
;
Tang, Tao
收藏
  |  
浏览/下载:10/0
  |  
提交时间:2021/05/10
Finite volume method
Hyperbolic conservation laws
Local time stepping
Moving mesh method
Adaptive Mesh Redistibution Method Based on Godunov's Scheme
期刊论文
Communication on Mathematical Sciences,2003, 卷号: 1, 期号: 1, 页码: 152–179
作者:
Azarenok, Boris N.
;
Ivanenko, Sergey A.
;
Tang, Tao
收藏
  |  
浏览/下载:8/0
  |  
提交时间:2021/08/06
Adaptive mesh redistribution algorithm
moving mesh method
Godunov's scheme
hyperbolic conservation laws
Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws
期刊论文
SIAM Journal on Numerical Analysis,2003, 卷号: 41, 期号: 2, 页码: 487-515
作者:
Tang, Huazhong
;
Tang, Tao
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2021/05/10
Adaptive mesh method
Finite volume method
Hyperbolic conservation laws