科研成果详情

发表状态已发表Published
题名Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal pooling
作者
发表日期2022-11-17
发表期刊Frontiers in Marine Science
ISSN/eISSN2296-7745
卷号9
摘要

For the routine target detection algorithm in the underwater complex environment to obtain the image of the existence of blurred images, complex background and other phenomena, leading to difficulties in model feature extraction, target miss detection and other problems. Meanwhile, an improved YOLOv7 model is proposed in order to improve the accuracy and real-time performance of the underwater target detection model. The improved model is based on the single-stage target detection model YOLOv7, incorporating the CBAM attention mechanism in the model, so that the feature information of the detection target is weighted and enhanced in the spatial dimension and the channel dimension, capturing the local relevance of feature information, making the model more focused on target feature information, improved detection accuracy, and using the SPPFCSPC module, reducing the computational effort of the model while keeping the model perceptual field unchanged, improved inference speed of the model. After a large number of comparison experiments and ablation experiments, it is proved that our proposed ACFP-YOLO algorithm model has higher detection accuracy compared with Efficientdet, Faster-RCNN, SSD, YOLOv3, YOLOv4, YOLOv5 models and the latest YOLOv7 model, and is more accurate for target detection tasks in complex underwater environments advantages.

关键词ACFP-YOLO attention SPPFCSPC Underwater Object detection YOLOv7
DOI10.3389/fmars.2022.1056300
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology
WOS类目Environmental Sciences ; Marine & Freshwater Biology
WOS记录号WOS:000892786600001
Scopus入藏号2-s2.0-85143349608
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10136
专题北师香港浸会大学
通讯作者Zhou, Zhuang
作者单位
1.Key Laboratory of Intelligent Detection in Complex Environment of Aerospace Land and Sea,Beijing Institute of Technology,Zhuhai,China
2.Faculty of Innovation Engineering,Macau University of Science and Technology,Macao,China
3.Faculty of Science and Technology,Hong Kong Baptist University United International College,Beijing Normal University,Zhuhai,China
推荐引用方式
GB/T 7714
Yan, Jinghui,Zhou, Zhuang,Zhou, Dujuanet al. Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal pooling[J]. Frontiers in Marine Science, 2022, 9.
APA Yan, Jinghui., Zhou, Zhuang., Zhou, Dujuan., Su, Binghua., Xuanyuan, Zhe., .. & Liang, Wanxin. (2022). Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal pooling. Frontiers in Marine Science, 9.
MLA Yan, Jinghui,et al."Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal pooling". Frontiers in Marine Science 9(2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yan, Jinghui]的文章
[Zhou, Zhuang]的文章
[Zhou, Dujuan]的文章
百度学术
百度学术中相似的文章
[Yan, Jinghui]的文章
[Zhou, Zhuang]的文章
[Zhou, Dujuan]的文章
必应学术
必应学术中相似的文章
[Yan, Jinghui]的文章
[Zhou, Zhuang]的文章
[Zhou, Dujuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。