科研成果详情

发表状态已发表Published
题名C-FDRL: Context-Aware Privacy-Preserving Offloading Through Federated Deep Reinforcement Learning in Cloud-Enabled IoT
作者
发表日期2023-02-01
发表期刊IEEE Transactions on Industrial Informatics
ISSN/eISSN1551-3203
卷号19期号:2页码:1155-1164
摘要

Recently, artificial intelligence approaches are widely suggested to optimize numerous offloading task-scheduling purposes. However, they confront difficulties in maintaining data privacy regarding the context of the data offloading during the course of offloading in the different stages. To address this problem, in this article we propose C-fDRL, a framework to provide context-aware federated deep reinforcement learning (fDRL) to maintain the context-aware privacy of the task offloading. We perform this in three stages (CloudAI, EdgeAI, and DeviceAI) of the overall system. C-fDRL checks whether the privacy of high-context-aware data with the task being offloaded is maintained locally at the DeviceAI, and low-context-aware data distributedly at the EdgeAI. When there is an offloading task request or a user needs to offload the data, C-fDRL uses a context-aware data management approach to decouple the context-aware (privacy) data from the tasks. This separates the context-aware data from the task for local computation and allows a new scheduling technique called 'context-aware multilevel scheduler.' This places high-context-aware data on local devices and low-context-aware data at the edge device for computation before the actual task execution. We performed experiments to evaluate the data privacy with the offloading tasks and the federated DRL. The results show that the proposed C-fDRL performs better than the existing framework.

关键词Cloud computing context-aware data privacy deep reinforcement learning (DRL) edge computing (EC) federated learning (FL) Internet of Things (IoT) security
DOI10.1109/TII.2022.3149335
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
WOS类目Automation & Control Systems ; Computer Science, Interdisciplinary Applications ; Engineering, Industrial
WOS记录号WOS:000926964700004
Scopus入藏号2-s2.0-85124772598
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10280
专题理工科技学院
通讯作者Bhuiyan, Md Zakirul Alam
作者单位
1.College of Computer Science and Electronic Engineering,Hunan University,Changsha,410082,China
2.Department of Computer and Information Sciences,Fordham University,10458,United States
3.BNU-UIC Institute of Artificial Intelligence and Future Networks,Beijing Normal University (BNU Zhuhai),Guangdong,519088,China
4.Guangdong Key Lab of Ai and Multi-Modal Data Processing,BNU-HKBU United International College (UIC),Guangdong,361021,China
5.Faculty of Data Science,Shiga University,Shiga,522-8522,Japan
6.National Institute of Technology Patna,Department of Computer Science and Engineering,National Institute of Technology Patna,Patna,800005,India
推荐引用方式
GB/T 7714
Xu, Yang,Bhuiyan, Md Zakirul Alam,Wang, Tianet al. C-FDRL: Context-Aware Privacy-Preserving Offloading Through Federated Deep Reinforcement Learning in Cloud-Enabled IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 1155-1164.
APA Xu, Yang, Bhuiyan, Md Zakirul Alam, Wang, Tian, Zhou, Xiaokang, & Singh, Amit Kumar. (2023). C-FDRL: Context-Aware Privacy-Preserving Offloading Through Federated Deep Reinforcement Learning in Cloud-Enabled IoT. IEEE Transactions on Industrial Informatics, 19(2), 1155-1164.
MLA Xu, Yang,et al."C-FDRL: Context-Aware Privacy-Preserving Offloading Through Federated Deep Reinforcement Learning in Cloud-Enabled IoT". IEEE Transactions on Industrial Informatics 19.2(2023): 1155-1164.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Yang]的文章
[Bhuiyan, Md Zakirul Alam]的文章
[Wang, Tian]的文章
百度学术
百度学术中相似的文章
[Xu, Yang]的文章
[Bhuiyan, Md Zakirul Alam]的文章
[Wang, Tian]的文章
必应学术
必应学术中相似的文章
[Xu, Yang]的文章
[Bhuiyan, Md Zakirul Alam]的文章
[Wang, Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。