科研成果详情

发表状态已发表Published
题名Spatiotemporal Feature Hierarchy-Based Blind Prediction of Natural Video Quality via Transfer Learning
作者
发表日期2023-03-01
发表期刊IEEE Transactions on Broadcasting
ISSN/eISSN0018-9316
卷号69期号:1页码:130-143
摘要

In this paper, we propose a pyramidal spatiotemporal feature hierarchy (PSFH)-based no-reference (NR) video quality assessment (VQA) method using transfer learning. First, we generate simulated videos by a generative adversarial network (GAN)-based image restoration model. The residual maps between the distorted frames and simulated frames, which can capture rich information, are utilized as one input of the quality regression network. Second, we use 3D convolution operations to construct a PSFH network with five stages. The spatiotemporal features incorporating the shared features transferred from the pretrained image restoration model are fused stage by stage. Third, with the guidance of the transferred knowledge, each stage generates multiple feature mapping layers that encode different semantics and degradation information using 3D convolution layers and gated recurrent units (GRUs). Finally, five approximate perceptual quality scores and a precise prediction score are obtained by fully connected (FC) networks. The whole model is trained under a finely designed loss function that combines pseudo-Huber loss and Pearson linear correlation coefficient (PLCC) loss to improve the robustness and prediction accuracy. According to the extensive experiments, outstanding results can be obtained compared with other state-of-the-art methods. Both the source code and models are available online.1

关键词3D convolution generative adversarial network pyramidal spatiotemporal feature transfer learning Video quality assessment
DOI10.1109/TBC.2022.3192997
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000836588300001
Scopus入藏号2-s2.0-85135750036
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10304
专题理工科技学院
通讯作者Zhou, Mingliang
作者单位
1.Chongqing University,School of Computer Science,Chongqing,400044,China
2.City University of Hong Kong,Computer Science Department,Hong Kong,Hong Kong
3.Nanjing University of Science and Technology,School of Computer Science and Engineering,Nanjing,210094,China
4.Beijing Normal University,BNU-UIC Institute of Artificial Intelligence and Future Networks,Zhuhai,519088,China
5.BNU-HKBU United International College,Guangdong Key Laboratory of AI Multi-Modal Data Processing,Zhuhai,519087,China
推荐引用方式
GB/T 7714
Xian, Weizhi,Zhou, Mingliang,Fang, Binet al. Spatiotemporal Feature Hierarchy-Based Blind Prediction of Natural Video Quality via Transfer Learning[J]. IEEE Transactions on Broadcasting, 2023, 69(1): 130-143.
APA Xian, Weizhi., Zhou, Mingliang., Fang, Bin., Liao, Xingran., Ji, Cheng., .. & Jia, Weijia. (2023). Spatiotemporal Feature Hierarchy-Based Blind Prediction of Natural Video Quality via Transfer Learning. IEEE Transactions on Broadcasting, 69(1), 130-143.
MLA Xian, Weizhi,et al."Spatiotemporal Feature Hierarchy-Based Blind Prediction of Natural Video Quality via Transfer Learning". IEEE Transactions on Broadcasting 69.1(2023): 130-143.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xian, Weizhi]的文章
[Zhou, Mingliang]的文章
[Fang, Bin]的文章
百度学术
百度学术中相似的文章
[Xian, Weizhi]的文章
[Zhou, Mingliang]的文章
[Fang, Bin]的文章
必应学术
必应学术中相似的文章
[Xian, Weizhi]的文章
[Zhou, Mingliang]的文章
[Fang, Bin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。