发表状态 | 已发表Published |
题名 | Stability of a Non-Lipschitz Stochastic Riemann-Liouville Type Fractional Differential Equation Driven by Lévy Noise |
作者 | |
发表日期 | 2022-08 |
发表期刊 | Acta Applicandae Mathematicae
![]() |
ISSN/eISSN | 0167-8019 |
卷号 | 180期号:1 |
摘要 | In this paper, stability of a non-Lipschitz stochastic Riemann-Liouville type fractional differential equation driven by Lévy noise is studied. Three types of stability, namely, stochastic stability, almost sure exponential stability, and moment exponential stability, of the fractional equation are established. Examples are given to illustrate and to support our results. |
关键词 | Almost sure exponential stability Fractional derivative of Riemann-Liouville type Lévy noise Moment exponential stability Stochastic fractional differential equations with non-Lipschitz coefficients Stochastic stability |
DOI | 10.1007/s10440-022-00506-w |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000814283800005 |
Scopus入藏号 | 2-s2.0-85132575860 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/10475 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Wu, Jianglun |
作者单位 | 1.Department of Mathematics,Anhui Normal University,Wuhu,241000,China 2.Department of Mathematics,Computational Foundry,Swansea University,Swansea,SA1 8EN,United Kingdom |
推荐引用方式 GB/T 7714 | Shen, Guangjun,Wu, Jianglun,Xiao, Ruidonget al. Stability of a Non-Lipschitz Stochastic Riemann-Liouville Type Fractional Differential Equation Driven by Lévy Noise[J]. Acta Applicandae Mathematicae, 2022, 180(1). |
APA | Shen, Guangjun, Wu, Jianglun, Xiao, Ruidong, & Zhan, Weijun. (2022). Stability of a Non-Lipschitz Stochastic Riemann-Liouville Type Fractional Differential Equation Driven by Lévy Noise. Acta Applicandae Mathematicae, 180(1). |
MLA | Shen, Guangjun,et al."Stability of a Non-Lipschitz Stochastic Riemann-Liouville Type Fractional Differential Equation Driven by Lévy Noise". Acta Applicandae Mathematicae 180.1(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论