发表状态 | 已发表Published |
题名 | The effect of noise intensity on parabolic equations |
作者 | |
发表日期 | 2020-05-05 |
发表期刊 | Discrete and Continuous Dynamical Systems - Series B
![]() |
ISSN/eISSN | 1531-3492 |
卷号 | 25期号:5页码:1715-1728 |
摘要 | In this paper, the effect of noise intensity on parabolic equations is considered. We focus on the effect of noise on the energy solutions of stochastic parabolic equations. By utilising Ito's formula and the energy estimate method, we obtain excitation indices of the solution u at time t. Furthermore, we improve existing results by introducing a simple method to verify the existing results in the literature. |
关键词 | Energy estimate method Itô's formula Stochastic parabolic equation |
DOI | 10.3934/dcdsb.2019248 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000520895100006 |
Scopus入藏号 | 2-s2.0-85081957034 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/10493 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Wei, Jinlong |
作者单位 | 1.College of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing,210044,China 2.Institute of Mathematics,School of Mathematical Science,Nanjing Normal University,Nanjing,210023,China 3.School of Statistics and Mathematics Zhongnan University of Economics and Law,Wuhan,430073,China 4.Department of Mathematics,Swansea University,Swansea,SA2 8PP,United Kingdom |
推荐引用方式 GB/T 7714 | Lv, Guangying,Gao, Hongjun,Wei, Jinlonget al. The effect of noise intensity on parabolic equations[J]. Discrete and Continuous Dynamical Systems - Series B, 2020, 25(5): 1715-1728. |
APA | Lv, Guangying, Gao, Hongjun, Wei, Jinlong, & Wu, Jianglun. (2020). The effect of noise intensity on parabolic equations. Discrete and Continuous Dynamical Systems - Series B, 25(5), 1715-1728. |
MLA | Lv, Guangying,et al."The effect of noise intensity on parabolic equations". Discrete and Continuous Dynamical Systems - Series B 25.5(2020): 1715-1728. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论