科研成果详情

题名Large Angle of Attack Prediction for Tail-Sitter Using ANN-Based Flush Air Data Sensing
作者
发表日期2023
会议名称International Conference on Guidance, Navigation and Control, ICGNC 2022
会议录名称Lecture Notes in Electrical Engineering
ISBN9789811966125
ISSN1876-1100
卷号845 LNEE
页码6722-6731
会议日期August 5-7, 2022
会议地点Harbin
摘要

Flush air data sensing systems (FADS) have been widely applied on aerial vehicles to provide air data estimation. Air data such as angle of attack (AoA) and air speed can be estimated through resolving pressure measurements of the sensor matrix. These parameters can be utilized to improve the performance of flight control system and realize better flight performance. Existing FADS studies and applications can estimate AoA in the range typically below 55 . It is suitable for traditional fixed wing unmanned aerial vehicles (UAVs), but some fixed wing vertical take off and landing (VTOL) UAVs have requirements in measuring air data under larger AoA. In this work, a FADS based on artificial neural network has been applied on a tail-sitter to provided large AoA estimation in low Reynolds number. Computational fluid dynamic analysis has been carried out to evaluate the critical AoA where stall region affects the sensor matrix. Wind tunnel tests have been further carried to collect data for network training. The trained network can provide estimation of large AoA at the range of −80 to 80 with acceptable accuracy.

关键词AoA prediction Distributed pressure sensing Neural networks
DOI10.1007/978-981-19-6613-2_648
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85151130293
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10616
专题个人在本单位外知识产出
通讯作者Shan, Xiaowen
作者单位
1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Tianchun, L. Y.,Li, Xiaoda,Wu, Yonglianget al. Large Angle of Attack Prediction for Tail-Sitter Using ANN-Based Flush Air Data Sensing[C], 2023: 6722-6731.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tianchun, L. Y.]的文章
[Li, Xiaoda]的文章
[Wu, Yongliang]的文章
百度学术
百度学术中相似的文章
[Tianchun, L. Y.]的文章
[Li, Xiaoda]的文章
[Wu, Yongliang]的文章
必应学术
必应学术中相似的文章
[Tianchun, L. Y.]的文章
[Li, Xiaoda]的文章
[Wu, Yongliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。