科研成果详情

发表状态已发表Published
题名Cross-collection latent Beta-Liouville allocation model training with privacy protection and applications
作者
发表日期2023-07-01
发表期刊Applied Intelligence
ISSN/eISSN0924-669X
卷号53期号:14页码:17824-17848
摘要

Cross-collection topic models extend previous single-collection topic models, such as Latent Dirichlet Allocation (LDA), to multiple collections. The purpose of cross-collection topic modeling is to model document-topic representations and reveal similarities between each topic and differences among groups. However, the restriction of Dirichlet prior and the significant privacy risk have hampered those models’ performance and utility. Training those cross-collection topic models may, in particular, leak sensitive information from the training dataset. To address the two issues mentioned above, we propose a novel model, cross-collection latent Beta-Liouville allocation (ccLBLA), which operates a more powerful prior, Beta-Liouville distribution with a more general covariance structure that enhances topic correlation analysis. To provide privacy protection for the ccLBLA model, we leverage the inherent differential privacy guarantee of the Collapsed Gibbs Sampling (CGS) inference scheme and then propose a hybrid privacy protection algorithm for the ccLBLA model (HPP-ccLBLA) that prevents inferring data from intermediate statistics during the CGS training process without sacrificing its utility. More crucially, our technique is the first attempt to use the cross-collection topic model in image classification applications and investigate the cross-collection topic model’s capabilities beyond text analysis. The experimental results for comparative text mining and image classification will show the merits of our proposed approach.

关键词Beta-Liouville prior Comparative text mining Cross-collection model Differential privacy Image classification Topic correlation
DOI10.1007/s10489-022-04378-3
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000913573700003
Scopus入藏号2-s2.0-85146255428
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10786
专题理工科技学院
通讯作者Luo, Zhiwen
作者单位
1.The Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montréal, H3H 1M8, Canada
2.G-SCOP Lab, Grenoble Institute of Technology, Grenoble, 38031, France
3.Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College (UIC), Zhuhai, Guangdong, 519088, China
推荐引用方式
GB/T 7714
Luo, Zhiwen,Amayri, Manar,Fan, Wentaoet al. Cross-collection latent Beta-Liouville allocation model training with privacy protection and applications[J]. Applied Intelligence, 2023, 53(14): 17824-17848.
APA Luo, Zhiwen, Amayri, Manar, Fan, Wentao, & Bouguila, Nizar. (2023). Cross-collection latent Beta-Liouville allocation model training with privacy protection and applications. Applied Intelligence, 53(14), 17824-17848.
MLA Luo, Zhiwen,et al."Cross-collection latent Beta-Liouville allocation model training with privacy protection and applications". Applied Intelligence 53.14(2023): 17824-17848.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Luo, Zhiwen]的文章
[Amayri, Manar]的文章
[Fan, Wentao]的文章
百度学术
百度学术中相似的文章
[Luo, Zhiwen]的文章
[Amayri, Manar]的文章
[Fan, Wentao]的文章
必应学术
必应学术中相似的文章
[Luo, Zhiwen]的文章
[Amayri, Manar]的文章
[Fan, Wentao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。