科研成果详情

题名CRNN: A Joint Neural Network for Redundancy Detection
作者
发表日期2017-06-12
会议名称IEEE International Conference on Smart Computing (SMARTCOMP)
会议录名称2017 IEEE International Conference on Smart Computing, SMARTCOMP 2017
ISBN9781509065172
会议日期MAY 29-31, 2017
会议地点Hong Kong, PEOPLES R CHINA
摘要

This paper proposes a novel framework for detecting redundancy in supervised sentence categorisation. Unlike traditional singleton neural network, our model incorporates character- A ware convolutional neural network (Char-CNN) with character-aware recurrent neural network (Char-RNN) to form a convolutional recurrent neural network (CRNN). Our model benefits from Char-CNN in that only salient features are selected and fed into the integrated Char-RNN. Char-RNN effectively learns long sequence semantics via sophisticated update mechanism. We compare our framework against the state-of-the- A rt text classification algorithms on four popular benchmarking corpus. For instance, our model achieves competing precision rate, recall ratio, and F1 score on the Google-news data-set. For twenty-news-groups data stream, our algorithm obtains the optimum on precision rate, recall ratio, and F1 score. For Brown Corpus, our framework obtains the best F1 score and almost equivalent precision rate and recall ratio over the top competitor. For the question classification collection, CRNN produces the optimal recall rate and F1 score and comparable precision rate. We also analyse three different RNN hidden recurrent cells' impact on performance and their runtime efficiency. We observe that MGU achieves the optimal runtime and comparable performance against GRU and LSTM. For TFIDF based algorithms, we experiment with word2vec, GloVe, and sent2vec embeddings and report their performance differences.

关键词CNN GloVe GRU LSTM MGU RNN Sentence classification word2vec
DOI10.1109/SMARTCOMP.2017.7946996
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号WOS:000411757300002
Scopus入藏号2-s2.0-85022324620
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10991
专题个人在本单位外知识产出
作者单位
1.University of Nottingham,Ningbo,United Kingdom
2.Nvidia Technology Center and Solution Architect and Engineering,Asia Pacfic and Japan,Nvidia,Japan
推荐引用方式
GB/T 7714
Fu, Xinyu,Ch'Ng, Eugene,Aickelin, Uweet al. CRNN: A Joint Neural Network for Redundancy Detection[C], 2017.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fu, Xinyu]的文章
[Ch'Ng, Eugene]的文章
[Aickelin, Uwe]的文章
百度学术
百度学术中相似的文章
[Fu, Xinyu]的文章
[Ch'Ng, Eugene]的文章
[Aickelin, Uwe]的文章
必应学术
必应学术中相似的文章
[Fu, Xinyu]的文章
[Ch'Ng, Eugene]的文章
[Aickelin, Uwe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。