发表状态 | 已发表Published |
题名 | Parallel inference for cross-collection latent generalized Dirichlet allocation model and applications |
作者 | |
发表日期 | 2024-03-15 |
发表期刊 | Expert Systems with Applications
![]() |
ISSN/eISSN | 0957-4174 |
卷号 | 238 |
摘要 | Existing cross-collection topic models with document-topic representation encounter performance bottlenecks in large-scale datasets due to their reliance on Dirichlet priors and conventional inference schemes. These constraints become noticeable in models derived from the Latent Dirichlet Allocation (LDA) framework. To address these challenges, this paper introduces the GPU-accelerated cross-collection latent generalized Dirichlet allocation (gccLGDA) model. This innovative approach integrates the benefits of generalized Dirichlet (GD) distribution with the computational prowess of GPU-based parallel inference, offering enhanced cross-collection topic modeling. The gccLGDA employs the GD distribution presenting a more flexible prior with a comprehensive covariance structure, enabling a more nuanced capture of relationships between latent topics across different collections. Leveraging GPU for parallel inference, our model promises scalable and efficient training for expansive datasets, making it apt for large-scale data challenges. Through empirical evaluations in comparative text mining and document classification, we demonstrate the enhanced performance of the gccLGDA, highlighting its advantages over existing cross-collection topic models. |
关键词 | Comparative text mining Cross-collection model Generalized Dirichlet Graphics processing unit Parallel inference Topic correlation |
DOI | 10.1016/j.eswa.2023.121720 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science ; Engineering ; Operations Research & Management Science |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science |
WOS记录号 | WOS:001088350200001 |
Scopus入藏号 | 2-s2.0-85172739801 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/11385 |
专题 | 理工科技学院 |
通讯作者 | Luo, Zhiwen |
作者单位 | 1.The Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,1515 St.Catherine Street West,H3G1T7,Canada 2.Guangdong Provincial Key Laboratory IRADS and Department of Computer Science,Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College,Zhuhai,519088,China |
推荐引用方式 GB/T 7714 | Luo, Zhiwen,Amayri, Manar,Fan, Wentaoet al. Parallel inference for cross-collection latent generalized Dirichlet allocation model and applications[J]. Expert Systems with Applications, 2024, 238. |
APA | Luo, Zhiwen, Amayri, Manar, Fan, Wentao, Ihou, Koffi Eddy, & Bouguila, Nizar. (2024). Parallel inference for cross-collection latent generalized Dirichlet allocation model and applications. Expert Systems with Applications, 238. |
MLA | Luo, Zhiwen,et al."Parallel inference for cross-collection latent generalized Dirichlet allocation model and applications". Expert Systems with Applications 238(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论