科研成果详情

发表状态已发表Published
题名Probabilistic rotation modeling based on directional mixture density networks
作者
发表日期2024-03-01
发表期刊Information Sciences
ISSN/eISSN0020-0255
卷号662
摘要

Predicting 3D rotations from a single image presents a significant challenge, primarily due to the inherent uncertainty arising from factors such as high symmetry, self-obscuration, and noise in the 3D environment. In this work, we propose a novel multimodal-based probabilistic model that integrates the matrix Fisher distribution and von Mises Fisher distribution into a mixture density network. Our model not only captures the inherent uncertainty of the object but also learns this uncertainty directly from the training data, thereby enhancing the robustness, flexibility, and efficiency of the model. To further refine the model's ability to handle ambiguities and recognize multiple distinct modes, we introduce a relaxed version of the winner-take-all loss function. This adaptation significantly improves the model's capability in accurately representing complex multimodal distributions. The performance of our model is rigorously assessed using two challenging datasets: Pascal3D+ and ModelNet10-SO(3). Extensive experimental analysis highlights the model's exceptional capability to fit complex multimodal distributions. Notably, when tested on the ModelNet10-SO(3) dataset, which is characterized by its ambiguity, and the more unequivocal Pascal3D+ dataset, our model outperforms the prevailing top baseline models by achieving accuracy improvements of 2.7% and 3.4%, respectively, at the minimum angle threshold. These results not only demonstrate our model's advanced capabilities in fitting complex distributions but also validate its effectiveness in accurately predicting 3D rotations in both ambiguous and unambiguous scenarios.

关键词3D rotation regression Matrix Fisher mixture Mixture Density Network (MDN) Probabilistic modelling von Mises Fisher mixture
DOI10.1016/j.ins.2024.120231
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:001174296800001
Scopus入藏号2-s2.0-85183945873
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11389
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
2.Guangdong Provincial Key Laboratory IRADS,Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,China
3.The Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,Canada
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Zeng, Lidan,Fan, Wentao,Bouguila, Nizar. Probabilistic rotation modeling based on directional mixture density networks[J]. Information Sciences, 2024, 662.
APA Zeng, Lidan, Fan, Wentao, & Bouguila, Nizar. (2024). Probabilistic rotation modeling based on directional mixture density networks. Information Sciences, 662.
MLA Zeng, Lidan,et al."Probabilistic rotation modeling based on directional mixture density networks". Information Sciences 662(2024).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zeng, Lidan]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Zeng, Lidan]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Zeng, Lidan]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。