发表状态 | 已发表Published |
题名 | Estimating the Reciprocal of a Binomial Proportion |
作者 | |
发表日期 | 2024-04-01 |
发表期刊 | International Statistical Review
![]() |
ISSN/eISSN | 0306-7734 |
卷号 | 92期号:1页码:1-16 |
摘要 | The binomial proportion is a classic parameter with many applications and has also been extensively studied in the literature. By contrast, the reciprocal of the binomial proportion, or the inverse proportion, is often overlooked, even though it also plays an important role in various fields. To estimate the inverse proportion, the maximum likelihood method fails to yield a valid estimate when there is no successful event in the Bernoulli trials. To overcome this zero-event problem, several methods have been introduced in the previous literature. Yet to the best of our knowledge, there is little work on a theoretical comparison of the existing estimators. In this paper, we first review some commonly used estimators for the inverse proportion, study their asymptotic properties, and then develop a new estimator that aims to eliminate the estimation bias. We further conduct Monte Carlo simulations to compare the finite sample performance of the existing and new estimators, and also apply them to handle the zero-event problem in a meta-analysis of COVID-19 data for assessing the relative risks of physical distancing on the infection of coronavirus. |
关键词 | binomial proportion inverse proportion relative risk shrinkage estimator zero-event problem |
DOI | 10.1111/insr.12539 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000953541900001 |
Scopus入藏号 | 2-s2.0-85150847481 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/11478 |
专题 | 北师香港浸会大学 |
通讯作者 | Tong, Tiejun |
作者单位 | 1.Department of Mathematics, Hong Kong Baptist University, Hong Kong, China 2.Faculty of Science and Technology, BNU-HKBU United International College, Zhuhai, China |
推荐引用方式 GB/T 7714 | Wei, Jiajin,He, Ping,Tong, Tiejun. Estimating the Reciprocal of a Binomial Proportion[J]. International Statistical Review, 2024, 92(1): 1-16. |
APA | Wei, Jiajin, He, Ping, & Tong, Tiejun. (2024). Estimating the Reciprocal of a Binomial Proportion. International Statistical Review, 92(1), 1-16. |
MLA | Wei, Jiajin,et al."Estimating the Reciprocal of a Binomial Proportion". International Statistical Review 92.1(2024): 1-16. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论