科研成果详情

发表状态已发表Published
题名Grouped Spherical Data Modeling Through Hierarchical Nonparametric Bayesian Models and Its Application to fMRI Data Analysis
作者
发表日期2024-04-01
发表期刊IEEE Transactions on Neural Networks and Learning Systems
ISSN/eISSN2162-237X
卷号35期号:4页码:5566-5576
摘要

Recently, spherical data (i.e., L normalized vectors) modeling has become a promising research topic in various real-world applications (such as gene expression data analysis, document categorization, and gesture recognition). In this work, we propose a hierarchical nonparametric Bayesian model based on von Mises-Fisher (VMF) distributions for modeling spherical data that involve multiple groups, where each observation within a group is sampled from a VMF mixture model with an infinite number of components allowing them to be shared across groups. Our model is formulated by employing a hierarchical nonparametric Bayesian framework known as the hierarchical Pitman-Yor (HPY) process mixture model, which possesses a power-law nature over the distribution of the components and is particularly useful for data distributions with heavy tails and skewness. To learn the proposed HPY process mixture model with VMF distributions, we systematically develop a closed-form optimization algorithm based on variational Bayes (VB). The merits of the proposed hierarchical Bayesian nonparametric model for modeling grouped spherical data are demonstrated through experiments on both synthetic data and a real-world application about resting-state functional magnetic resonance imaging (fMRI) data analysis.

关键词Functional magnetic resonance imaging (fMRI) data analysis hierarchical nonparametric Bayesian model hierarchical Pitman-Yor (HPY) process spherical data variational Bayes (VB) von Mises-Fisher (VMF)
DOI10.1109/TNNLS.2022.3208202
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000865079200001
Scopus入藏号2-s2.0-85139473547
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11479
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Beijing Normal University-Hong Kong Baptist University United International College (UIC), Faculty of Science and Technology, Zhuhai, 519087, China
2.Huaqiao University, Department of Computer Science and Technology, Xiamen, 361021, China
3.Concordia Institute for Information Systems Engineering (CIISE), Concordia University, Montreal, H3G 1T7, Canada
第一作者单位理工科技学院
通讯作者单位理工科技学院
推荐引用方式
GB/T 7714
Fan, Wentao,Yang, Lin,Bouguila, Nizar. Grouped Spherical Data Modeling Through Hierarchical Nonparametric Bayesian Models and Its Application to fMRI Data Analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5566-5576.
APA Fan, Wentao, Yang, Lin, & Bouguila, Nizar. (2024). Grouped Spherical Data Modeling Through Hierarchical Nonparametric Bayesian Models and Its Application to fMRI Data Analysis. IEEE Transactions on Neural Networks and Learning Systems, 35(4), 5566-5576.
MLA Fan, Wentao,et al."Grouped Spherical Data Modeling Through Hierarchical Nonparametric Bayesian Models and Its Application to fMRI Data Analysis". IEEE Transactions on Neural Networks and Learning Systems 35.4(2024): 5566-5576.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Yang, Lin]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Yang, Lin]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Yang, Lin]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。