题名 | Accelerating DIN Model for Online CTR Prediction with Data Compression |
作者 | |
发表日期 | 2022 |
会议录名称 | 2022 7th International Conference on Big Data Analytics, ICBDA 2022
![]() |
页码 | 84-89 |
摘要 | As the key task of recommender systems, the click-Through rate(CTR) prediction is to predict the probability of users clicking on a specific product. It is often costly due to the big data sets. In this paper, we apply some data compression technology to accelerate CTR prediction. By casting the data format to some more memory-efficient format, we can significantly improve a popular recommender method online. |
关键词 | CTR prediction data compression recommender system |
DOI | 10.1109/ICBDA55095.2022.9760313 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85129526069 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/11499 |
专题 | 北师香港浸会大学 |
通讯作者 | Zhu,Shengxin |
作者单位 | 1.BNU-HKBU United International College,Division of Science and Technology,Zhuhai,China 2.Beijing Normal University,Research Center for Mathematics,Zhuhai,China |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Feng,Yitian,Zhu,Shengxin,Ou,Yichen. Accelerating DIN Model for Online CTR Prediction with Data Compression[C], 2022: 84-89. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论