科研成果详情

发表状态已发表Published
题名Summation of gaussian shifts as jacobi’s third theta function
作者
发表日期2020-08-01
发表期刊Mathematical Foundations of Computing
ISSN/eISSN2577-8838
卷号3期号:3页码:157-163
摘要

A proper choice of parameters of the Jacobi modular identity (Jacobi Imaginary transformation) implies that the summation of Gaussian shifts on infinity periodic grids can be represented as the Jacobi’s third Theta function. As such, connection between summation of Gaussian shifts and the solution to a Schr¨odinger equation is explicitly shown. A concise and controllable upper bound of the saturation error for approximating constant functions with summation of Gaussian shifts can be immediately obtained in terms of the underlying shape parameter of the Gaussian. This sheds light on how to choose a shape parameter and provides further understanding on using Gaussians with increasingly flatness.

关键词Gaussian radial basis functions Jacobi Theta function Jacobi’s imaginary transformation modular identity saturation error
DOI10.3934/mfc.2020015
URL查看来源
收录类别ESCI
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000593768700002
Scopus入藏号2-s2.0-85110473236
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11501
专题个人在本单位外知识产出
通讯作者Zhu, Shengxin
作者单位
Laboratory for Intelligent Computing and Financial Technology Department of Mathematics,Xi’an Jiaotong-Liverpool University,Suzhou,215123,China
推荐引用方式
GB/T 7714
Zhu, Shengxin. Summation of gaussian shifts as jacobi’s third theta function[J]. Mathematical Foundations of Computing, 2020, 3(3): 157-163.
APA Zhu, Shengxin. (2020). Summation of gaussian shifts as jacobi’s third theta function. Mathematical Foundations of Computing, 3(3), 157-163.
MLA Zhu, Shengxin."Summation of gaussian shifts as jacobi’s third theta function". Mathematical Foundations of Computing 3.3(2020): 157-163.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Shengxin]的文章
百度学术
百度学术中相似的文章
[Zhu, Shengxin]的文章
必应学术
必应学术中相似的文章
[Zhu, Shengxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。