科研成果详情

题名Personalized Recommender Systems with Multi-source Data
作者
发表日期2020
会议名称Science and Information Conference, SAI 2020
会议录名称Advances in Intelligent Systems and Computing
ISSN2194-5357
卷号1228 AISC
页码219-233
会议日期16 July 2020-17 July 2020
会议地点London
摘要

Pervasive applications of personalized recommendation models aim to seek a targeted advertising strategy for business development and to provide customers with personalized suggestions for products or services based on their personal experience. Conventional approaches to recommender systems, such as Collaborative Filtering (CF), use direct user ratings without considering latent features. To overcome such a limitation, we develop a recommendation strategy based on the so-called heterogeneous information networks. This method can combine two or multiple sources datasets and thus can reveal more latent associations/features between items. Compared with the well-known ‘k Nearest Neighborhood’ model and ‘Singular Value Decomposition’ approach, the new method produces a substantial higher accuracy under the commonly used measurement which is mean absolute deviation.

关键词Collaborative filtering Heterogeneous information networks Recommender systems Similarity Singular value decomposition
DOI10.1007/978-3-030-52249-0_15
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85088518483
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11503
专题个人在本单位外知识产出
通讯作者Ma, Fei
作者单位
1.Department of Mathematical Sciences,Xi’an Jiaotong-Liverpool University,Suzhou,215123,China
2.Laboratory for Intelligent Computing and Finance Technology,Xi’an Jiaotong-Liverpool University,Suzhou,215123,China
推荐引用方式
GB/T 7714
Wang, Yili,Wu, Tong,Ma, Feiet al. Personalized Recommender Systems with Multi-source Data[C], 2020: 219-233.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yili]的文章
[Wu, Tong]的文章
[Ma, Fei]的文章
百度学术
百度学术中相似的文章
[Wang, Yili]的文章
[Wu, Tong]的文章
[Ma, Fei]的文章
必应学术
必应学术中相似的文章
[Wang, Yili]的文章
[Wu, Tong]的文章
[Ma, Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。