科研成果详情

题名WTBNeRF: Wind Turbine Blade 3D Reconstruction by Neural Radiance Fields
作者
发表日期2023
会议名称International Conference of The Efficiency and Performance Engineering Network, TEPEN 2022
会议录名称PROCEEDINGS OF TEPEN 2022: Efficiency and Performance Engineering Network
会议录编者Hao Zhang, Yongjian Ji, Tongtong Liu, Xiuquan Sun, Andrew David Ball
ISBN9783031261954
ISSN2211-0984
卷号Mechanisms and Machine Science (Mechan. Machine Science, volume 129)
页码675-687
会议日期AUG 18-21, 2022
会议地点Baotou
会议举办国China
出版者Springer
摘要

With the increasing popularity of wind turbines, the demand for integrity detecting of wind turbines operating in natural or extreme environments is also increasing. To better detect the state of wind turbines, rendering and 3D reconstruction of realistic wind turbine models has become a crucial task. The neural radiation field is becoming a widely used method for novel view synthesis and 3D reconstruction. In the original neural radiation field method, the scene or object is required to have a large number of features or complex textures. But for wind turbines, the surface is smooth and texture-free, which creates blur and ghosting in the results. Therefore, we propose the Wind Turbine Neural Radiance Fields (WTBNeRF), a network dedicated to wind turbine rendering and 3D reconstruction. Instead of single pixel-centered rays, we use conical truncated rays to cover individual pixel ranges in greater detail, effectively reducing aliasing and blurring in smooth, low-texture wind turbine scenes. At the same time, obtaining accurate camera poses for low-texture objects and scenes is also a challenging task. We use a pretrained camera pose estimation neural radiation field network to predict the camera pose of the wind turbines in the dataset, reducing the requirement to know the real camera parameters of the data in advance. Moreover, in the network design, we simplify the network structure, which greatly reduced the network training time. The speed is about 10 times faster than that of NeRF for our multi-scale wind turbine dataset. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词3D Reconstruction Novel view synthesis Wind turbine blade
DOI10.1007/978-3-031-26193-0_60
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Engineering
WOS类目Engineering, Manufacturing
WOS记录号WOS:001050311800059
Scopus入藏号2-s2.0-85151142921
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11527
专题理工科技学院
通讯作者Zhang, Hui
作者单位
1.School of Ocean Engineering and Technology, Sun Yat-sen University, Guangzhou, China
2.Guangdong Key Lab of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, China
3.School of Industrial Automation, Beijing Institute of Technology, Zhuhai, 519088, China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Yang, Han,Tang, Linchuan,Ma, Huiet al. WTBNeRF: Wind Turbine Blade 3D Reconstruction by Neural Radiance Fields[C]//Hao Zhang, Yongjian Ji, Tongtong Liu, Xiuquan Sun, Andrew David Ball: Springer, 2023: 675-687.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Han]的文章
[Tang, Linchuan]的文章
[Ma, Hui]的文章
百度学术
百度学术中相似的文章
[Yang, Han]的文章
[Tang, Linchuan]的文章
[Ma, Hui]的文章
必应学术
必应学术中相似的文章
[Yang, Han]的文章
[Tang, Linchuan]的文章
[Ma, Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。