题名 | BiverWordle: Visualizing Stock Market Sentiment with Financial Text Data and Trends |
作者 | |
发表日期 | 2023-09-22 |
会议录名称 | ACM International Conference Proceeding Series
![]() |
摘要 | While financial forums are increasingly significant in financial analysis, current visualization tools do not properly exploit their text data. To address this, we present BiverWordle, a novel tool that reveals the relationship between market sentiment and firm trends. BiverWordle integrates candlestick chart, ThemeRiver, and Wordle with text classification and sentiment analysis techniques to decode market dynamics from textual sources, such as shareholder opinions and firm announcements. With the application of a Voting model to the manually labeled data, we achieved an accuracy of approximately 64%. BiverWordle facilitates the extraction of shareholder insights from sparse comments and provides a visual method for historical stock trend analysis, which we validated with three distinct stock trends. Resources are accessible at https://github.com/Brian-Lei-XIA/BiverWordle. |
关键词 | Financial Text Processing Sentiment Analysis Visualization |
DOI | 10.1145/3615522.3615541 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85178381174 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/11570 |
专题 | 北师香港浸会大学 |
作者单位 | 1.Department of Computer Science,Beijing Normal University,Hong Kong Baptist University,United International College,Zhuhai,China,China 2.Computational Media and Arts,Hong Kong University of Science and Technology,Guangzhou,China |
第一作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Xia,Lei,Gao,Yi Ping,Lin,Leet al. BiverWordle: Visualizing Stock Market Sentiment with Financial Text Data and Trends[C], 2023. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xia,Lei]的文章 |
[Gao,Yi Ping]的文章 |
[Lin,Le]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xia,Lei]的文章 |
[Gao,Yi Ping]的文章 |
[Lin,Le]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xia,Lei]的文章 |
[Gao,Yi Ping]的文章 |
[Lin,Le]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论